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Abstract

Automatic sign language recognition lies at the intersec-

tion of natural language processing (NLP) and computer

vision. The highly successful transformer architectures,

based on multi-head attention, originate from the field of

NLP. The Video Transformer Network (VTN) is an adapta-

tion of this concept for tasks that require video understand-

ing, e.g., action recognition. However, due to the limited

amount of labeled data that is commonly available for train-

ing automatic sign (language) recognition, the VTN cannot

reach its full potential in this domain. In this work, we re-

duce the impact of this data limitation by automatically pre-

extracting useful information from the sign language videos.

In our approach, different types of information are offered

to a VTN in a multi-modal setup. It includes per-frame hu-

man pose keypoints (extracted by OpenPose) to capture the

body movement and hand crops to capture the (evolution of)

hand shapes. We evaluate our method on the recently re-

leased AUTSL dataset for isolated sign recognition and ob-

tain 92.92% accuracy on the test set using only RGB data.

For comparison: the VTN architecture without hand crops

and pose flow achieved 82% accuracy. A qualitative inspec-

tion of our model hints at further potential of multi-modal

multi-head attention in a sign language recognition context.

1. Introduction

Research into deep learning techniques for computer vi-

sion and natural language processing techniques is pro-

gressing rapidly. Sign language recognition and translation

lie at the intersection of both areas. While a lot of progress

has recently been made towards actual sign language trans-

lation, it is still a highly complex problem beyond the cur-

rent state of the art. Most research still focuses on the sub-

domains of isolated and continuous sign recognition. This

ignores several grammatical aspects of sign languages by

simplifying the problem to a classification task or an align-

ment and classification task, respectively. Current methods

devised for recognizing signs in video are unlikely to gen-

eralize to actual sign language translation as they are. How-

ever, these sub-domains allow the development of feature

extraction methods and other information extraction algo-

rithms that can provide input to future sign language trans-

lation research.

Several recent works evaluate the use of transformers in

sign language translation [6, 7, 35]. The multi-head atten-

tion mechanism can also be applied to isolated sign recog-

nition. The Video Transformer Network (VTN), originally

proposed by Kozlov et al. [20], was used for isolated sign

recognition on the corpus of Flemish sign language and

achieved promising results (74.7% accuracy on 100 classes

[10]), which were mainly limited by the size of the labeled

dataset. The VTN architecture consists of a 2D CNN as fea-

ture extractor and multi-head attention layers as sequence

processing network, as a replacement of a recurrent neural

network or variant thereof, e.g., a Long Short-Term Mem-

ory (LSTM) network.

The work presented in this paper was performed in the

context of the ChaLearn 2021 Looking at People Large

Scale Signer Independent Isolated SLR CVPR Challenge

[26]. The AUTSL dataset [27] used in this competition pro-

vides RGB-D data captured using a Kinect camera. Because

we believe that the need for any additional hardware (be-

yond a simple camera) would dramatically reduce the use-

fulness of sign language translation systems, we consider

only the RGB data for this work.

The AUTSL dataset was created for the development

of isolated sign recognition algorithms, with varying back-

grounds and multiple persons. It consists of 36,302 samples



from 226 sign categories. It is signer-independent: each of

the 43 signers occurs only in either training, validation, or

test set. This is especially important because a powerful

model will pick up particularities about individual persons.

When the same person(s) occur in train, validation and test

sets, validation and test scores will be overly optimistic due

to data leakage. In contrast, AUTSL allows for a realistic

evaluation of the scores that can be achieved for entirely

unknown persons. Section 3.1 presents more information

on this dataset and how we use it to train our models.

In its original form, the VTN achieves a 82% accuracy on

the validation set of the AUTSL dataset. The performance

of this highly powerful network is largely constrained by the

limited amount of labeled data [10]. We propose to over-

come this by pre-extracting relevant information and offer-

ing only this to the network. As a first step, by using only

the two cropped hand images as inputs rather than a full

body image, we increase the accuracy by 8.1% (absolute in-

crease). A further improvement is achieved by adding body

pose motion information (extracted with OpenPose [8]) to

distinguish better between signs with similar hand shapes

but different movements. This further increases the accu-

racy by 1.4% (absolute increase).

Besides their power, the use of attention in transformers

also offers increased interpretability of the trained models.

Through visual analysis, we can learn what our model is

attending to and which important information may still be

missing. We believe that such visual analysis of attention

in our models can support future interaction with sign lan-

guage linguists and facilitate the transition to true automatic

sign language understanding and translation.

In summary, the contributions of this work are:

• We extract pre-processed multi-modal input from RGB

video data to considerably increase the performance of

an existing VTN model for isolated sign recognition

(AUTSL dataset).

• Our approach introduces pose flow, a method inspired

by optical flow, to represent body movements based on

pose keypoints.

• We qualitatively analyze our model, showing some in-

teresting properties of multi-head attention when ap-

plied to isolated sign recognition.

The source code and weights of our model are publicly

available1.

2. Background

Sign language recognition is the field of research that

aims to extract the information that is needed to automati-

1https://github.com/m-decoster/ChaLearn-2021-

LAP

cally understand or translate sign language from a continu-

ous input stream. As this work only explores the sub-task

of isolated sign recognition, the focus of this section lies

on the background in this domain. A broader overview of

contributions to sign recognition, including continuous sign

recognition, can be found in the works of Bragg et al. [4]

and Koller [19].

2.1. Isolated sign recognition

Arguably the least intrusive method to recognize sign

language possible today is through the use of consumer-

grade cameras available in mobile phones. Early research

in the domain of isolated sign recognition based on video

data, e.g., the seminal work of Tamura et al. [29], uses

computer vision algorithms such as color thresholding to

extract features. Grobel et al. [12] extract features based

on parameters of sign language: hand location, orientation,

and shape. Vogler et al. extract information such as bend-

ing factor of fingers and movements of the hands and use

these as independent channels in a recognition system [33].

In the previous decade research shifted towards end-to-end

deep learning, encouraged by the success of Convolutional

Neural Networks (CNNs) on computer vision problems and

Recurrent Neural Networks (RNNs) on sequence process-

ing problems. Promising initial results were achieved in the

domain of sign language recognition using end-to-end deep

learning. Pigou et al. use a 2D CNN for sign recognition

on Dutch and Flemish sign language [23]. With the advent

of off-the-shelf pre-trained human pose estimation systems

such as OpenPose [8], several sign language recognition re-

searchers applied recurrent neural networks using keypoints

as input features [18, 17, 10]. However, because move-

ments in sign language can be quick (leading to motion

blur), and because there is occlusion between and within

the hands, these keypoints can be noisy [10]. Furthermore,

recent works have shown that end-to-end models can sig-

nificantly outperform pose based models [30, 21, 1]. The

work that introduces the WLASL dataset for isolated sign

recognition compares several deep learning architectures: a

2D CNN followed by an RNN, a 3D CNN, a pose RNN and

a pose Temporal Graph Convolutional Network [21]. The

pose based networks use OpenPose [8] keypoints as input

features. The authors find that the 3D CNN, specifically

I3D, outperforms the other networks. Albanie et al. further

increased the performance on WLASL using transfer learn-

ing [1]. They first train the 3D CNN I3D [9] on a dataset

extracted from the British sign language corpus [24] and use

it for transfer learning to other datasets, including MS-ASL

[30] and WLASL [21].

Signs have several phonological components. Stokoe ac-

knowledges hand shape, movement and place of articula-

tion as parameters of signs [28]. Recognizing hand shapes

is clearly an important part of a sign language recognition



Figure 1. The video transformer consists of a spatial feature ex-

tractor (CNN), followed by a self-attention decoder with N layers.

PE(i) is the positional encoding for the ith feature vector in the

sequence; Attn is multi-head dot-product attention; LN is layer

normalization.

system. We see for example that models can learn to fo-

cus on the hand regions [27]. However, it is also possible

to increase the inductive bias of sign language recognition

models by cropping out hand images and optionally using a

feature extractor that is pre-trained on a hand shape classi-

fication task [5, 6].

The transformer architecture [31] shows very promis-

ing results for machine translation. Since its introduction

in 2017, the transformer has re-defined the state of the art

of natural language processing. It is also being applied in

sign language translation [6, 7, 35]. De Coster et al., on

the other hand, use a 2D CNN and transformer for isolated

sign recognition [10]. Specifically, they use the VTN ar-

chitecture, which comprises a 2D CNN followed by several

attention layers [20]. They remove the (cross-attention) de-

coder from the transformer and only use the (self-attention)

encoder layers without masking. Their results are promis-

ing. Our work evaluates the VTN on the publicly avail-

able AUTSL [27] dataset. We find that the model is able

to perform isolated sign recognition with high accuracy on

AUTSL and can be improved through pre-processing.

2.2. Video transformer network

Kozlov et al. proposed the VTN for the task of action

recognition [20]. The VTN comprises a 2D CNN as spa-

tial feature extractor, followed by several attention layers.

These attention layers are extracted from the encoder of the

original transformer, as they perform self-attention. How-

ever, in the context of the VTN, they act as a decoder.

Therefore, we further refer to this component of the VTN

as the self-attention decoder. This decoder is built from

several blocks, with each block containing a residual multi-

head attention layer and a residual feed forward network,

with layer normalization [2] in between and at the end. As

this is a self -attention decoder, the multi-head attention is

computed from query, key and value originating from the

same input sequence. The positional encoding for each ele-

ment in the sequence is added to the feature vectors before

the first multi-head attention layer in the decoder. The VTN

uses the fixed positional encoding from the original trans-

former [31]. This encoding is required to provide informa-

tion on the ordering of the sequence to the network. The

VTN architecture is illustrated in Figure 1.

We now detail dot-product self-attention specifically in

the context of the VTN. The inputs to the self-attention net-

work are denoted as X , consisting of the feature vectors

extracted by the CNN. X is transformed into the queries Q,

keys K and values V through trainable linear transforma-

tions Q = XWQ, K = XWK and V = XWV . Each

head i of the n heads computes attention on a subset of the

query, key and value,

Qi = QW i
Q, (1)

Ki = KW i
K , (2)

V i = VW i
V , (3)

A(Qi,Ki, V i) = softmax

(

QiKi⊤

√

1/dk

)

V i, (4)

where weight matrices W i
Q, W i

K and W i
V are used to trans-

form the query, key and value to a lower-dimensional sub-

space. Each head operates on a subspace of the input size

dk = dmodel/n. The outputs of all heads are concatenated.

2.3. Pose estimation in sign language recognition

We observe in literature that OpenPose keypoints can be

noisy in sign language videos because of occlusions and fast

movements [10]. Furthermore purely pose based networks

are outperformed by end-to-end systems [10, 21]. We be-

lieve, however, that pose estimation can still be useful as an

augmentation to raw RGB video data or to compute low-

dimensional representations. For example, Albanie et al.

apply pose distillation (regressing poses from video) as a

pre-training step [1]. In this work, we use pose data for

pre-processing and to encode movement.

3. Methods

As we use a VTN, we model spatial information using

deep CNNs and temporal information using self-attention.

We propose several improvements to the VTN. This section

details the applied methods. Section 4 discusses our itera-

tive approach to the development of our final model.

3.1. Dataset

We use the balanced AUTSL dataset [27] for our experi-

ments. This dataset consists of 36,302 samples. Each sam-

ple corresponds to one of 226 signs, and is performed by

one of 43 different persons. The dataset is split in signer in-

dependent training, validation, and test sets. The videos are

filmed at different locations and from different viewpoints.

All samples are provided as separate RGB and depth video

files with a spatial resolution of 512 by 512 pixels and a

temporal resolution of 30 frames per second (FPS). We only

use the RGB data for our experiments in this work.



Figure 2. The samples have varying lengths; the median length in

the training set is 61 frames (approximately 2 seconds).

The training set contains 28,142 samples from 31 differ-

ent signers, the validation set 4,418 samples from 6 differ-

ent signers and the test set 3,742 samples from 6 different

signers.

The samples have varying lengths, with a median of 61

frames: see Figure 2. Every sample has wind-up and wind-

down segments in the beginning and end of the video. In

sign language conversations, this would not be the case:

there would be fluent transitions between signs and at times

both hands engage in simultaneous constructions [32]. For

the purpose of isolated sign recognition on this dataset, we

do not consider the wind-up and wind-down segments. In-

stead, we decide to select a segment from the middle of the

video. We select 16 frames with a stride of 2 frames for an

effective temporal receptive field of 32 frames. We decide

that this is an appropriate approach after visual inspection

and from the validation set accuracy of our models. Note

that 32 frames corresponds to slightly more than a second,

as the input videos are filmed at 30 FPS.

We find several outliers in terms of sample lengths in the

training set. Visual inspection shows us that there are two

main causes for the length of these samples. Either the signs

are performed slowly and deliberately, or the samples con-

tain repetitions of the sign. We decide not to alter or remove

these samples: different people sign with different speeds

and repetitions are unlikely to cause issues with training or

inference as we perform a temporally centered selection of

frames in our experiments.

3.2. Hand cropping

For isolated sign recognition, hand shape, orientation,

movement and place of articulation are arguably the most

important parameters to recognize. Non-manual compo-

nents such as mouthings, eye gaze and eyebrow movements

are also crucial elements of sign languages [3, 22]. How-

ever, we do not consider them here, for the task of iso-

lated sign recognition, because they are less important when

Figure 3. Cropping based on the hand keypoints (on the left) can

lead to distorted crops if keypoints are missing. The wrist and

elbow keypoints are predicted correctly more often than hand key-

points by OpenPose, and cropping based on these keypoints (on

the right) is more robust.

merely distinguishing between individual signs.

The videos in the AUTSL dataset have a spatial reso-

lution of 512 by 512 pixels. Considering that our model is

trained with inputs of 224 by 224 pixels, non-negligible spa-

tial down-scaling of the inputs occurs. This also means that

the spatial resolution of the hand regions is reduced. We can

instead crop out hand images in a pre-processing step and

use these as main inputs to the model, preserving more spa-

tial information in the areas of the hands. This also allows

the model to recognize hand shape and orientation indepen-

dently from the position of the hands.

We decide to perform this cropping based on OpenPose

keypoint information. Specifically, we use the OpenPose

BODY-135 model [14] which estimates keypoints for the

body, hands, face and feet. We could crop the hands by

computing an axis aligned bounding box around the hand

keypoints. However, OpenPose hand keypoints can be

noisy in sign language data [10]. Instead, we determine

a suitable location for the hand crop in the extension of

the forearm: based on the position of the elbow and wrist

keypoints, similar to the approach taken by Simon et al.

[25]. There are zero cases in the training set of AUTSL in

which all hand keypoints are predicted while the wrist or el-

bow keypoints are missing. Clearly calculating the crop on

these keypoints is a more robust option than using bounding

boxes around the hand keypoints. This is also illustrated in

Figure 3 which compares both methods.

We determine the size of the crops in a way that is mostly

invariant to the distance between the camera and the person

and to the physical appearance of that person. While Si-

mon et al. choose the crop dimensions based on statistics

from the training set, we base it on the distance between the

shoulders.

The square crops are defined as

b = (cx, cy, s), (5)

with c = (cx, cy) the center of the crop derived from the



wrist w and elbow e,

c = w + 0.15(w − e), (6)

and s the size of the crop derived from the distance between

the left and right shoulder (l and r),

s = 1.2 ‖l − r‖2 . (7)

The factor 0.15 for the extension along the direction of the

forearm in Equation 6 is the one proposed by Simon et al.

[25]. The factor 1.2 for the size of the crop in Equation 7

is empirically obtained by us. Without this scaling factor,

in some cases the crops would be slightly too small. This

happens for example when the hand is oriented vertically

or horizontally, or when the arm is stretched towards the

camera. This factor slightly increases the crop size to reduce

the number of these edge cases.

In rare cases, shoulder, wrist or elbow keypoints can be

missing. If this happens, we obtain a hand crop from a

neighboring frame, as temporally close as possible. Should

we be unable to find such a replacement hand crop, we use

full image inputs.

3.3. Pose flow

Cropping out the hands from the original video frames

is an effective way to reduce background noise and increase

the spatial resolution of the hands in the inputs. However,

we lose information about movements in the sign by doing

so. The input signal encodes changes in hand shape and

orientation, but not movement.

To reintroduce movement as a form of temporal informa-

tion, we could add the original full frame as an additional

input or compute optical flow. There are, however, several

drawbacks to these approaches. In both cases, we require an

additional branch of our feature extractor, because the high-

level features of hand images and optical flow or full body

images are not similar. In fact, we found that sharing pa-

rameters to compute features for both hand images and full

body images reduced the accuracy of our model. Adding an

additional branch, however, increases the amount of train-

able parameters by a large amount. Furthermore, calculat-

ing (dense) optical flow is computationally intensive.

Instead, we extract a movement encoding analogous to

optical flow using OpenPose keypoints. For a selection of

K keypoints, we compute the angle and magnitude of the

vector given by the difference in positions of a keypoint in

two consecutive frames. Doing this for all keypoints re-

sults in a feature vector that represents the movements of

the body using far fewer dimensions than dense optical flow

would. We denote the keypoints of a sample of length L
frames as P ∈ R

L×K×2, the keypoints of frame i ∈ [1, L]

as P (i) and the keypoint at index k in frame i as P
(i)
k . For a

frame i > 1, the motion vector is

µ
(i)
k = P

(i)
k − P

(i−1)
k . (8)

The angle of this motion vector with respect to the horizon-

tal axis is given by

θ
(i)
k = arctan2(y, x), (9)

for (x, y) = µ
(i)
k the components of the motion vector. The

magnitude of the motion vector is its 2-norm:

ρ
(i)
k =

∥

∥

∥
µ
(i)
k

∥

∥

∥

2
. (10)

The pose flow for the first frame, i = 1, is initialized as zero.

We therefore obtain a vector
(

θ
(i)
k , ρ

(i)
k

)

for every frame i

and keypoint k.

Before computing the pose flow, we perform following

pre-processing steps to increase robustness against keypoint

estimation errors and changes in camera position. We first

replace any keypoint that is missing (i.e., mapped to the ori-

gin by OpenPose) by looking for a frame in which it was

predicted, while minimizing the distance between the orig-

inal frame and replacement frame. Afterwards, we normal-

ize each pose frame by dividing the keypoints by the length

of the neck to account for the distance between the camera

and the subject. This ensures that the magnitude of move-

ments is not dependent on this distance as it would be if it

were expressed in pixels. We then finally compute the pose

flow on these normalized keypoints.

4. Experiments

This section details the three experiments compared in

this work. The experiments have several things in common.

One is the approach towards temporal sampling of frames

from the input videos. The persons always start with their

hands in a neutral position, perform the sign and then re-

turn to a neutral position. These frames are irrelevant to the

classification task. We select 16 frames in the middle of the

video with a temporal stride of 2 frames, for an effective

temporal receptive field of 32 frames.

For all our experiments, we use the following hyperpa-

rameter settings. We use the Adam optimizer [16] with ini-

tial learning rate λ = 1e−4, β1 = 0.9, β2 = 0.999 and

ǫ = 1e−8. During training, we decrease the learning rate

with a factor 10 every 5 epochs. We train until the validation

loss does not decrease for 10 epochs, and select the model

at the epoch with the lowest loss as our final model. We use

the categorical cross-entropy loss function.

For the 2D feature extractor, we choose ResNet-34 [13]

pre-trained on ImageNet [11], extracting a 512-dimensional

feature vector per frame. We use 4 layers of 8-head attention

to process the resulting sequence in the latent space. The

size of the embeddings in the self-attention decoder differs

per experiment.



4.1. Video transformer network (VTN)

For the first experiment, we apply the VTN to raw RGB

inputs. We apply multi-scale cropping [34], random hori-

zontal flipping (with probability 0.5 per sample) and small

random changes to brightness, contrast and saturation as

data augmentation. Since there is a single image input per

frame, the dimensions of the feature vector inputs to the

self-attention decoder are dmodel = 512.

4.2. Hand cropping (VTN­HC)

A drawback of the VTN trained with full frame inputs is

that the areas covering the hands have a small spatial reso-

lution in the inputs of the network. For this experiment, we

crop out the hands based on the wrist positions extracted

with OpenPose as described in Section 3.2. The resulting

hand crops are passed through the VTN, with parameter

sharing in the CNN. As we obtain one 512-dimensional

feature vector per hand, the embedding size in the self-

attention decoder dmodel is 1024.

Compared to the VTN, the VTN-HC has considerably

more trainable parameters: 50.9 million compared to 28.8

million. This is due to the increase in the embedding size.

While we experimented with dimensionality reduction be-

tween the feature extractor and decoder, we obtained the

best results by keeping all 1024 features.

4.3. Pose flow (VTN­PF)

From error analysis of the VTN-HC experiment we

notice confusions between certain classes. For example,

classes 224 and 165 are confused, as well as 51 and 22.

These pairs of signs have similar hand shapes but different

movements. Indeed, by only using hand crops as inputs the

network does not have access to information on the motion

of the person. Therefore, we wish to add this information

again to the model using pose flow.

We can use the pose keypoints to encode movements of

the body in a low-dimensional space. This can be done by

calculating motion vectors: differences in coordinates be-

tween consecutive frames. As a further feature transforma-

tion, we calculate the angle and magnitude of each motion

vector and use those as features: see Section 3.3. We nor-

malize the angle by dividing by π radians, such that the fea-

tures are within the range (−1, 1]. The magnitude is already

normalized because of the normalization of the pose before

the computation of pose flow.

We calculate the pose flow for K = 53 keypoints: we

use the pose keypoints of the upper body and the hands. We

do not use the keypoints of the face for pose flow computa-

tion as we empirically found no benefit to including them.

Note that this observation may not hold for sign language

translation.

This pose flow information, which is encoded as a 106-

dimensional vector per frame, is concatenated to the feature

Figure 4. By introducing hand cropping and pose flow into our

model, we can increase the accuracy on the validation set. As a

side effect, the number of trainable parameters of the model is also

increased. Our best model, VTN-PF, achieves 91.51% validation

set accuracy.

vectors extracted by the CNN. The resulting feature vector

is normalized to have zero mean and unit variance. We use a

non-linear transformation (with ReLU activation) such that

the input to the self-attention decoder has the same dimen-

sions as in the VTN-HC model, i.e., dmodel = 1024.

The amount of trainable parameters is slightly higher

than for the VTN-HC model (52.1 million), because of the

non-linear transformation between the feature extractor and

self-attention decoder.

5. Results and analysis

We compare the three experiments on the validation set

of AUTSL. The vanilla VTN, with full frame inputs, has

the smallest number of parameters but also obtains the low-

est accuracy of our experiments, 82.03%. By cropping out

the hands as a pre-processing step, we can increase the ac-

curacy to 90.13% (VTN-HC). This is due to several rea-

sons. Firstly, background noise is reduced and the model

can focus entirely on the regions around the hands. Sec-

ondly, the spatial resolution of the hands is higher when

they are cropped in pre-processing. Finally, the model can

learn hand shape and orientation independently from hand

position.

This last reason is also a drawback of our hand cropping

approach: we remove information about the position (and

therefore movement) of the hands. The VTN-PF model ob-

tains this information from pose flow. This reduces errors in

cases where two signs are hard to distinguish without move-

ment information, e.g., classes 224 and 165 and classes 51

and 22. Using this model, we can obtain a validation set

accuracy of 91.51%.

Figure 4 shows a comparison between the accuracy and

the amount of trainable parameters of these three experi-

ments.



Figure 5. The top five rows in this figure show the salience heatmaps for sample 120 of signer 11 for our three models. Each row is

normalized (along the time axis). On the bottom the attention masks are illustrated for all eight heads in the final self-attention layer of the

VTN-PF model. These attention masks are averaged to show the amount of attention given to each frame by all frames in the sequence.

Figure 6. Salience heatmaps and attention masks for sample 57 of signer 1, similar to Figure 5.

5.1. Qualitative analysis of the models

We qualitatively inspect our models by selecting two ran-

dom samples from the validation set and visualizing the spa-

tial information extraction by the ResNet-34 CNN as well

as the attention masks in the self-attention decoder. This

inspection is visualized in Figures 5 and 6.

The top five rows of each figure show salience heatmaps,

computed from the feature maps of the final layer of the

ResNet-34 feature extractor in the VTN, VTN-HC and

VTN-PF models. These heatmaps have been normalized

along the entire sequence such that we see the most impor-

tant features both spatially and temporally. For the VTN

(first row), we notice that the model focuses on the entire

person during the beginning and end frames and on the hand

regions during the other frames. The second and third row

visualize the salience maps of the VTN-HC model, for the



left and right hand, respectively. We notice that the network

focuses on hand shape. Temporally, the VTN-HC model

focuses on the frames in which the hand shape is specific

for the sign. Our observations are similar for the VTN-PF

model, though the specific frames that are focused on are

different. Furthermore, because of the added pose flow fea-

tures, less movement information needs to be encoded in the

spatial representation. The non-dominant hand is clearly

not important to the models in Figure 5. In a two handed

sign (Figure 6), we see activations in both hands.

Below the salience maps, we visualize the attention

masks for every head in the final self-attention layer of the

VTN-PF model. We take the attention mask and average it

along one dimension to visualize the amount every frame

is attended to by all frames in the sequence. We notice

quite some redundancy between the heads, suggesting that

we could prune the network to reduce the model size. We

also observe that only a small subset of frames is attended

to. This is the subset of frames from which we can deter-

mine the sign: the wind-up and wind-down frames are not

attended to. The multi-head attention appears to be able

to determine the temporal region(s) of interest of signs in

this task. We further observe that the attention masks and

spatial feature maps do not correspond temporally in the

VTN-PF model. This is likely because the attention is be-

ing performed to the motion in those frames (encoded by

pose flow), while the hand shape is extracted from different

frames as it is mostly the same throughout the sequence.

We draw two conclusions based on these visualiza-

tions. Firstly, we propose always using cropping as a

pre-processing step. In our case, we cropped around the

hands, but for sign language translation, we would also crop

around the face, like done by Camgoz et al. [6]. Secondly,

our qualitative analysis suggests that multi-head attention

extracts temporal regions of interest from signs. These

promising results as well as the results in the sign language

translation domain [7, 6, 35] encourage further investiga-

tion of the applications and inner workings of multi-head

attention in these domains.

5.2. Test set accuracy

This work has described our iterative approach towards

the development of our best model, the Video Transformer

Network with hand cropping and pose flow (VTN-PF). We

evaluate this model on the balanced test set of AUTSL. We

achieve an accuracy of 92.92%.

The baseline proposed by Sincan et al. [27] obtains a

test set accuracy of 49.22%. It is based on a CNN with fea-

ture pooling, followed by a bi-directional LSTM (BiLSTM)

with temporal attention. We also compare our method to

the three winners of the ChaLearn 2021 Looking at Peo-

ple Large Scale Signer Independent Isolated SLR CVPR

Challenge [26]. This comparison can be seen in Table 1.

Table 1. Comparison of our method with the three winners of the

ChaLearn 2021 Looking at People Large Scale Signer Independent

Isolated SLR CVPR Challenge [26] and the baseline.

Method Test set accuracy

SAM-SLR [15] 98.42%

USTC-SLR 97.62%

wenbinwuee 96.55%

VTN-PF (Ours) 92.92%

Baseline [27] 49.22%

The VTN-PF model clearly outperforms the baseline, but

other methods are more powerful. Jiang et al. (first place)

use an ensemble of models trained using optical flow, RGB

and keypoint data, which they name Skeleton Aware Multi-

modal SLR framework (SAM-SLR) [15]. For future work,

it would be interesting to investigate using our model in

such an ensemble. At the time of submission, no informa-

tion on the approaches used by the second (USTC-SLR) and

third place entries (wenbinwuee) was available.

6. Conclusion

We apply the VTN architecture, comprising a 2D CNN

and self-attention decoder, on the AUTSL isolated sign

recognition dataset. We obtain promising initial results with

the vanilla VTN, but a simple improvement can increase the

classification accuracy by a large amount. Instead of using

full frames of the video as input, which include irrelevant

information and possibly background noise, we crop out

images of the hands as inputs for the network. This yields

an increase in accuracy of 8.1%. As a further improvement

of 1.4% based on error analysis, we include pose flow in-

puts. Pose flow is similar to optical flow, but computed on

pose coordinates obtained from OpenPose rather than pix-

els. These pose flow inputs allow our model to better distin-

guish between signs which have similar hand shapes but dif-

ferent movements. Finally, we perform a qualitative analy-

sis of our model by visualizing and interpreting both spatial

salience maps and attention masks in our best performing

model. This analysis provides insight into the workings of

multi-head attention in a sign language recognition context.

Our final model, the Video Transformer Network with

hand cropping and pose flow (VTN-PF), achieves 92.92%

accuracy on the balanced test set of AUTSL.
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