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Acronyms

The following table provides definitions for acronyms and terms relevant to this document.

Acronym Definition

SLR Sign Language Recognition

SL Sign Language

SLT Sign Language Translation

CSV Comma Separated Value

VGT Flemish Sign Language

NGT Dutch Sign Language

ISL Irish Sign Language

BSL British Sign Language

LSE Spanish Sign Language

WP Work Package

MT Machine Translation

ROA Re-train On All
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1. Overview

Deliverable 3.2 describes the Sign Language Recognition (SLR) models and the SLR component. The

difference between model and component is the following. The models are the actual deep neural

networks that predict, given input video data, the sign corresponding to the video. The component is a

web service which wraps these models and is integrated into the SignON application framework (see

Deliverable 2.2). With this web service, the trained models can be used to perform inference on data

submitted by users of the application.
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2. SLR models

In this section, the SLR models are described including the data processing, model architecture, training

and inference procedures, and evaluation, for each of the five sign languages. These models are

implemented in Python with the PyTorch1 deep learning library, supported by the PyTorch Lightning2

framework. The model training and inference code is available in the SignON GitHub organization under

WP3/slr-pipeline.

2.1. Recognizing isolated signs in continuous signing

The purpose of the SLR models is to extract information from video data containing signs and to pass this

information onto the Sign Language Translation (SLT) models. Within the SignON project, we train SLR

models on the objective of recognizing individual signs, i.e., isolated sign recognition, extracted from

continuous signing. That is, during training, every video contains a single sign. The reasoning behind this

is a pragmatic choice necessitated by the limited amounts of available data (see Section 2.1.1 for

specifics). However, importantly, these videos are cut from longer (manually annotated) videos

containing sequences of signs with transitions and co-articulations. They introduce challenges that are

often not present in isolated SLR in the scientific literature: in most cases, there the datasets contain

recordings of individual signs without transitions such as in MS-ASL (Joze et al., 2018) or AUTSL (Sincan et

al., 2020); these are easier to recognize. However, the presence of these transitions and co-articulations

forces the models to learn features that are more representative of real-world signing. This is especially

important because after training, the models are also applied to continuous SL input and tasked to

recognize the signs they were trained on.

2.1.1. Why isolated SLR?

The SLR models are trained for the task of isolated SLR: that is, given an input video, the models are

tasked to predict a single sign for that input video. The lack of annotated data is what necessitates this

choice. For the corpora and datasets that are available for SignON, we are unable to extract sufficient

consecutive signs to support continuous SLR (there are too many gaps between annotated signs). Hence,

we start from the assumption that an isolated SLR model extracts salient SL representations (i.e., the

2 https://www.pytorchlightning.ai/

1 https://pytorch.org/
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embeddings we describe in Section 2.1.2) from the data and that these representations can be used for

downstream tasks such as SLT.

2.1.2. Why embeddings?

Labeled data is scarce in the SL processing domain. Furthermore, datasets that can be used for SLR and

datasets that can be used for SLT often originate from different sources. For example, the “Content4All

VRT NWS” dataset (Camgöz et al., 2021) contains data that can be used to train SLT models, but no

annotations for SLR. Moreover, because SLT datasets typically contain only very few parallel

utterances—the largest publicly available dataset, RWTH-PHOENIX-Weather 2014T (Camgöz et al., 2018),

containing only 8257 (De Coster et al., 2023)—it is impractical to train SLR and SLT end-to-end on these

data.

As a side-effect, there is little overlap between the data used for SLR and the data used for SLT within the

SignON project. The overlap between the vocabularies between SLR and SLT for NGT, the language for

which we have the most labeled data, is estimated at less than 5%. Hence, we would only be able to

predict glosses correctly for a very small portion of the translation data, even with an SLR model that has

perfect accuracy. Moreover, due to the lack of labeled data, the SLR models do not achieve near-perfect

accuracy. Hence, predicting glosses as output of SLR, and using these as input for SLT, would lead to a

large number of errors being propagated to the SLT model. Theoretically, should we have sufficient

annotated data, we would be able to predict glosses (as the “written form of signs”) with high accuracy

and use these in the downstream task. However, with the currently available data this is not possible,

and moreover, glosses do not contain all of the information that is present in actual signing (De Coster et

al., 2023), so there would still be information loss to a certain extent.

Instead, we choose to extract the latent representations (embeddings) from intermediate layers learned

by the SLR model: these embeddings are less specific than the gloss outputs and contain more generic

information relating to face, body, and hand morphology and movement. This could, for example, allow

an MT model to learn about common confusions between signs that resemble each other. Our

hypothesis is that these embeddings provide more general information than glosses. The SLT model then

operates directly on these embeddings3.

3 See D4.4 - Second distributional intermediate representation based on embeddings - InterL-E:
https://signon-project.eu/publications/public-deliverables/
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While glosses are specific to each SL and often dependent on the annotator and annotation guidelines,

the embeddings are less language-specific (see Section 2.4). This allows (i) to transfer embeddings from

one language to another, (ii) align SLR with SLT embeddings, and (iii) recognize previously unseen signs

(De Coster and Dambre, 2023).

2.2. Data

The SLR models, being deep neural networks, require large amounts of training data. To support a single

training and inference pipeline, we collect data for the considered languages and process these data in

the same way to obtain datasets in a uniform format.

2.2.1. Data format

The datasets are processed to obtain individual examples: every example consists of a video and

corresponding metadata. Each video is stored as a separate file in a directory and the metadata are

stored in one single CSV file per dataset. The metadata consists of the following fields:

● Id: A unique identifier for every sample

● Gloss: The gloss corresponding to this sign

● start_ms: The start time (in milliseconds) relative to the source video from which this sample

was extracted

● end_ms: The end time (in milliseconds) relative to the source video from which this sample was

extracted

● Participant: The unique participant identifier, indicating which person is signing this sample

● SourceVideo: Path of the source video file

● SampleVideo: Path of the video corresponding to this sign in the processed dataset

● subset: Either “train”, “val”, or “test”; this value indicates to which subset of the dataset this

sample belongs and how it is used for training and evaluation

Listing 1 shows an example for the VGT dataset.
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Id,Gloss,start_ms,end_ms,Participant,SourceVideo,SampleVideo,subset
0,EERST-A,15850,16040,i002,CVGT_01/CVGT_0102_i002.mp4,CVGT_0102.eaf_0

.mp4,train

1,WG-1,16047,16216,i002,CVGT_01/CVGT_0102_i002.mp4,CVGT_0102.eaf_1.mp

4,train

4,SCHOOL-A,17957,18223,i002,CVGT_01/CVGT_0102_i002.mp4,CVGT_0102.eaf_

4.mp4,train

Listing 1. Subset of the metadata file for the VGT data.

2.2.2. Data processing

The data sources consist of SL corpora (for VGT, NGT, ISL, and BSL); we describe which corpora these are

in Section 2.2.3. These corpora contain videos of continuous signing which are partly annotated with

glosses, translations, and metadata. These annotations are not in a unified format (De Sisto et al., 2022)

and need to be processed before they can be used to train SLR models. The processing procedure

consists of several steps. It is available in the SignON GitHub organization under the

WP3/SLR-Dataset-Processing repository.

First, all annotation files are collected. Only the files that contain annotations and that are linked to

existing video files are kept. All annotations from all files are gathered. A set of unique glosses is

collected; every gloss in this set is normalized to account for annotation differences. For example, in the

VGT corpus, some glosses occur both in lowercase and uppercase variants, but they refer to the same

unique sign. After normalizing the glosses, only those glosses that correspond to lexical signs are kept.

For example, fingerspelling annotations are removed because fingerspelling recognition is a task

separate from isolated SLR. This is done based on the gloss annotations (e.g., in the VGT coprus,

fingerspelling is indicated with “VS:<letters>” and in the NGT corpus with “#<letters>”). We then remove

infrequent glosses (see Table 1 for specifics), as deep neural networks require sufficient training data for

every category.

After collecting all annotations according to the above criteria, a dataset split is performed. This split is

stratified on gloss and grouped on participant identity. As a result, the distributions of the signs in the

training, validation, and test subsets are similar, and every participant only occurs in either the training,

validation, or test set, but never in two or more of these subsets. This is done to avoid data leakage.
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After the split, any glosses that do not occur in all three sets are removed: if a gloss is not present in the

training set, the model will not learn to predict it, and if it is not present in the validation or test set, we

cannot evaluate the model’s performance for this gloss.

2.2.3. Datasets

The data collection efforts have previously been discussed in Deliverable 3.1. Here, we repeat

information that is relevant for this deliverable: i.e., how these data were processed and used to train

SLR models. Table 1 summarizes some key information for the different datasets.

Table 1. Dataset statistics.

Dataset Number of
samples

Number of
distinct glosses

Number of
participants

Minimal number
of samples per
gloss

VGT 24967 292 112 20

NGT 68854 458 82 20

ISL 4013 224 37 3

BSL 2416 123 44 3

LSE N/A (see below) N/A (see below) N/A (see below) N/A (see below)

VGT

We use the VGT corpus4 as the data source to create our VGT dataset. Using the procedure outlined in

Section 2.2.2, we collect 24,967 data samples corresponding to 292 unique glosses, from 112 unique

participants. Every gloss has at least 20 occurrences across the entire dataset. The dataset features a

large class imbalance (see Figure 1), with more than 17% of the samples belonging to the two majority

classes. A baseline for the performance of an SLR model on this dataset is the “majority class prediction

baseline”, where the majority class is predicted for any model input. The accuracy of this baseline is

10.39%.

4 https://corpusvgt.be/
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Figure 1. Label distribution in the VGT dataset.

The examples are distributed more evenly with respect to the participants, though there are some

participants with very few samples (minimum: 1): see Figure 2.

Figure 2. Participant distribution in the VGT dataset.
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Figure 3. Sample duration distribution in the VGT dataset.

Because the samples are collected by segmenting videos with continuous signing, many samples are very

short: see Figure 3. The mean duration is 0.38 seconds (10 frames) and the minimum duration is 0.012

seconds (1 frame). Some outlier samples have a duration of 9 seconds (225 frames): these are samples

where a sign is being held for a long period of time or repeated multiple times.

NGT

We use the NGT corpus5 as the data source to create our NGT dataset. Using the procedure outlined in

Section 2.2.2, we collect 68,854 data samples corresponding to 458 unique glosses, from 82 unique

participants. Every gloss has at least 20 occurrences across the entire dataset. Like the VGT dataset, the

NGT dataset features a large class imbalance (see Figure 4). The majority class prediction baseline for the

performance of an SLR model on this dataset is 12.76%. The participant distribution is shown in Figure 5,

and the distribution of the duration of samples in Figure 6. The minimum duration is 0.001 seconds (1

frame), and the maximum duration is 17.92 seconds (448 frames). Like in the VGT dataset, these are

samples where a sign is being held for a long period of time or repeated multiple times. The mean

duration is 0.32 seconds (8 frames).

5 https://www.corpusngt.nl/
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Figure 4. Label distribution in the NGT dataset.

Figure 5. Participant distribution in the NGT dataset.

Figure 6. Sample duration distribution in the NGT dataset.
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ISL

We use the Signs of Ireland Corpus6 as the source to create our ISL dataset. Using the procedure outlined

in Section 2.2.2, we collect 4,013 data samples corresponding to 224 unique glosses from 37 unique

participants. In this case, each gloss has a minimum of only 3 occurrences across the entire dataset. It

was proposed that this lower bound be set to 20 occurrences as with VGT/NGT, however this would have

limited the number of trainable classes to just 50. As with the VGT and NGT datasets, the ISL dataset

features a large class imbalance (see Figure 7). The majority class prediction baseline for the

performance of an SLR model on this dataset is 11.06%. The participant distribution is shown in Figure 8,

and the distribution of the duration of samples in Figure 9. The minimum duration is 0.04 seconds (1

frame), and the maximum duration is 3.2 seconds (80 frames). The mean duration is 0.70 seconds (18

frames).

Figure 7. Label distribution in the ISL dataset.

Figure 8. Participant distribution in the ISL dataset.

6 http://www.tara.tcd.ie/bitstream/handle/2262/1597/ITT?sequence=1
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Figure 9. Sample duration distribution in the ISL dataset.

BSL

We use the BSL Corpus Project7 as the source to create our BSL dataset. Specifically, the narrative activity

is used in which signers tell a personal story. Using the procedure outlined in Section 2.2.2, we collect

2,416 data samples corresponding to 123 unique glosses from 44 unique participants. In this case, each

gloss has a minimum of only 3 occurrences across the entire dataset. It was proposed that this lower

bound be set to 20 occurrences as with VGT/NGT, however this would have limited the number of

trainable classes to just 21. As with all other datasets, the BSL dataset features a large class imbalance

(see Figure 10). The majority class prediction baseline for the performance of an SLR model on this

dataset is 13.8%. The participant distribution is shown in Figure 11, and the distribution of the duration

of samples in Figure 12. The minimum duration is 0.04 seconds (1 frame), and the maximum duration is

4.8 seconds (120 frames). The mean duration is 0.41 seconds (10 frames).

7 https://bslcorpusproject.org/
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Figure 10. Label distribution in the BSL dataset.

Figure 11. Participant distribution in the BSL dataset.

Figure 12. Sample duration distribution in the BSL dataset.
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LSE

Out of the datasets collected in the SignON project for LSE, there were no datasets which contained

parallel gloss annotations for videos with sufficient examples per video to train an isolated SLR model.

Hence, the proposed pipeline of training isolated SLR models could not be applied for LSE. However, we

still support this language in the SignON application through other means. We describe in Section 2.4.5

and Section 3 how LSE inputs are processed in the pipeline and the SignON application.

2.3. Pipeline

2.3.1. SLR pipeline architecture

The SLR pipeline is implemented as a Python software package. It can be used to train SLR models, to

evaluate them, and to perform inference with them. Inference can be performed in an online fashion for

use in the SLR component (see Section 3) or in an offline fashion to process batches of videos for training

SLT models. The SLR pipeline is deterministic and can handle arbitrary SL video datasets, as long as they

are converted to the format described in Section 2.2.1.

Listing 2 shows an example invocation of the pipeline to train a model on the VGT dataset. The

hyperparameters of the model are set with command line arguments and are stored along with model

checkpoints. Training progress can be logged to either Tensorboard8 or Weights and Biases9.

python -m train --run_name vgt_scratch --gpus 1

--variable_length_sequences --batch_size 128 --log_dir /logs

--model_name PoseFormer --learning_rate 0.0003 --num_attention_layers

4 --num_attention_heads 8 --d_pose 134 --source_aspect_ratio 0.5652

--d_hidden 192 --num_classes 292 --data_kind Mediapipe --num_workers

4 --data_dir /data/corpusvgt

Listing 2. Invocation of the training command for the SLR pipeline.

9 https://wandb.ai/

8 https://www.tensorflow.org/tensorboard
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Once this model is trained, it can be evaluated on all available data using the command shown in Listing

3. Only the checkpoint path and an output file need to be provided. This command will write predictions

for all files to the given CSV file.

python -m test /logs/vgt_scratch/model_best.ckpt

/predictions/vgt_scratch.csv

Listing 3. Invocation of the evaluation command for the SLR pipeline.

The same model can also be used for offline inference, i.e., to extract embeddings for one or more

videos. The command for this is shown in Listing 4.

python -m predict /logs/vgt_scratch/model_best.ckpt /data/new_videos

/data/model_predictions --embedding_kind spatial

Listing 4. Invocation of the inference command for the SLR pipeline.

To perform online inference, the pipeline can be used as a library in a larger Python project (see Section

3).

The overall structure of the SLR pipeline is illustrated in Figure 13. First, the video data are processed

using MediaPipe Holistic (an external software package) to extract keypoints. Keypoint cleaning is

performed as a form of data standardization (see Section 2.3.2). These cleaned keypoints form the input

to the model (see Section 2.3.1). The model is trained to predict glosses, but during inference

embeddings are extracted.

© SignON Consortium, 2023 18 of 29



D3.2 – Sign Language Recognition Component and Models, GA 101017255

Figure 13. The SLR pipeline.

2.3.1. Model architecture

The model architecture, which is detailed below, was obtained by tuning layers and making architectural

choices based on the properties of the data and on intermediate results, to improve the accuracy score

on the validation subsets of the used SLR datasets.

The architecture—illustrated in Figure 14—consists of five stages, which together form a deep neural

network that is optimized end-to-end. In the first stage, residual depthwise 1D convolutions learn to

recognize local temporal patterns for every input feature individually. In the second stage, an embedding

is learned for every frame in the input sequence independently, learning non-linear relationships

between individual keypoint coordinates. The third stage processes the resulting frame embeddings

temporally with a limited receptive field using a stack of residual depthwise 1D convolutions, detecting

local temporal patterns within the frame embedding sequence. The fourth stage learns global temporal

information using self-attention: the receptive field is the entire sequence. Self-attention uses so-called

“CLS pooling” (Devlin et al., 2018): a single vector summarizes the entire sequence. Finally, this vector is

used as the input to a classification layer.
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Figure 14. The SLR model architecture, divided into the five stages. Every row corresponds to a single

stage.

2.3.2. Model input and output requirements

The SLR models use keypoints extracted with MediaPipe Holistic10 as input. This pose estimator was

chosen because it supports full body pose estimation in almost real-time. The keypoints corresponding

to the upper body and the hands are used. Experiments were performed with the addition of face

keypoints (more specifically a subset of the lip and eyebrow keypoints, which were found useful in the

classification of signs in a recent SLR Kaggle competition11), but these did not yield satisfactory results.

Because MediaPipe Holistic fails to predict keypoints in some cases, e.g., when a hand could not be

detected, temporal imputation is performed. Temporal imputation means the replacement of missing

values by leveraging the fact that these missing values occur in a sequence. In case one or more frames

11 https://www.kaggle.com/competitions/asl-signs

10 https://github.com/google/mediapipe/blob/master/docs/solutions/holistic.md
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are missing, linear interpolation is used to impute these. We search for the nearest previous and

subsequent non-missing frames, and perform linear interpolation to fill in the blanks.

We furthermore perform a shift to the center of the chest and a scaling to the distance between the

shoulders as a form of data normalization (which is essential for the performance of machine learning

models). In this way, we account for camera position and distance. The hands and body are processed

separately. These normalized and imputed keypoints form the input to the model. The effects of

normalization are illustrated in Figure 15.

Figure 15. The normalization procedure changes the scale and values of features, a crucial step before

training machine learning models.

The models are trained to predict glosses, and hence the outputs of the models are K values, where K is

the number of glosses in each of the datasets. However, for the SLR component and for training the SLT

models, we use internal embeddings from our model (see Section 2.1.2). The SLR models can provide

spatial, temporal, and class embeddings. Spatial embeddings are the output of the frame embedding

block of the network (see Section 2.3.1). One embedding is returned per frame. Temporal embeddings

are the output of the sequence embedding block of the network. At this point, the network has

processed the entire input sequence. One embedding is returned per frame. Class embeddings are

extracted from the same block as temporal embeddings, but summarize the entire input sequence into

one vector. In the current SLR models, 192-dimensional spatial embeddings are used. This is visualized in

Figure 16.
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Figure 16. The spatial, temporal, and class embeddings are extracted from different parts of the model.

Refer to Figure 14 for the complete model architecture and the contents of the constituent blocks.

2.3.3. Training procedure

The SLR models are sign classification models12, so they are trained to minimize the categorical

cross-entropy loss and to maximize classification accuracy. The models are trained with early stopping.

Several hyperparameters are tuned to obtain optimal performance with the given data and model

architecture. Notable hyperparameters include:

● Learning rate

● Learning rate schedule

● Embedding size

● Number of self-attention layers

● Number of self-attention heads

● Label smoothing

● Weight decay

The optimal hyperparameter values for every model are stored along with their checkpoints in the

GitHub repository under WP3/slr-pipeline.

Data augmentation is used to mitigate the impact of the lack of data. We perform the following

augmentations after extracting keypoints with MediaPipe and cleaning them:

● Randomly shifting the hand keypoints across time with a small offset

● Randomly flipping the keypoints horizontally

● Randomly rotating the hands independently by small angles

● Introducing random noise to the keypoints

12 Typically, we refer to such models as “classifiers.” To avoid confusion with the linguistic term “classifier
handshape,” we will continue to use “classification models” in this document.
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● Random temporal cropping of subsequences

● Randomly removing hands from the frames to simulate missing keypoints

These augmentations were evaluated individually (by recording their impact on the validation set

accuracy) and their hyperparameters were tuned to obtain optimal results.

Once optimal hyperparameters have been found, we fix them and we retrain the models on the training

and validation set data. The test set accuracy is then the final measure we report to evaluate our models

by.

To further reduce the impact of the lack of data, we also investigated knowledge transfer and knowledge

sharing between languages. We hypothesize that certain low level features are shared between

languages (e.g., hand shapes, movements, body poses…). Knowledge transfer is implemented in the

form of transfer learning: we first train an SLR model on one dataset and then transfer (part of) it to

another dataset. In this case, we transfer the entire model except for the final classification layer. We first

freeze all transferred weights and train only the new, randomly initialized, classification layer. The

performance at this point is an indication of how well the embeddings map to the new dataset and to

the different language. When the loss has converged, we fine-tune the model until the early stopping

criterion is met (i.e., the validation loss has not reduced for 20 epochs). At this point, we have properly

tuned the downstream model and can look at the benefits of transfer learning.

Knowledge sharing is implemented as multilingual training: we concatenate multiple datasets and train a

joint classification model. To avoid confusions between signs that are similar but from different

languages, we furthermore learn a small language embedding and give this as additional input to the

classification model. We obtain better results with transfer learning than with multilingual training, so

we only report on the former.

2.4. Results

We report the accuracy for every language on the training, validation, and test set. We only report the

current best scores for every dataset. We also report the test set accuracy when we Re-train On All (ROA)

training and validation data using the best hyperparameters found on the validation set.
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2.4.1. VGT

The VGT model was first trained on NGT, after which the weights were transferred to VGT and

fine-tuned. The accuracy scores are given in Table 2.

Table 2. Accuracy scores for VGT.

Training set Validation set Test set Test set (ROA)

No transfer 75.25% 50.07% 47.70% 49.07%

NGT transfer
(no fine-tuning)

56.60% 49.37% 48.23% 48.40%

NGT transfer
(fine-tuning)

76.76% 52.37% 50.80% 48.83%

2.4.2. NGT

The NGT model was trained from scratch, i.e., without pre-training on another language. The accuracy

scores are given in Table 3.

Table 3. Accuracy scores for NGT.

Training set Validation set Test set Test set (ROA)

No transfer 70.88% 47.26% 51.91% 52.66%

2.4.3. ISL

The ISL model was first trained on NGT, after which the weights were transferred to ISL and fine-tuned.

The accuracy scores are given in Table 4.
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Table 4. Accuracy scores for ISL.

Training set Validation set Test set Test set (ROA)

No transfer 81.78% 25.98% 22.13% 26.27%

NGT transfer
(no fine-tuning)

64.86% 28.21% 25.85% 26.27%

NGT transfer
(fine-tuning)

74.12% 30.10% 30.07% 27.45%

2.4.4. BSL

The BSL model was first trained on NGT, after which the weights were transferred to BSL and fine-tuned.

The accuracy scores are given in Table 5.

Table 5. Accuracy scores for BSL.

Training set Validation set Test set Test set (ROA)

No transfer 32.61% 24.42% 18.76% 23.55%

NGT transfer
(no fine-tuning)

52.82% 30.69% 25.35% 31.54%

NGT transfer
(fine-tuning)

65.21% 32.78% 28.14% 31.54%

2.4.5. LSE

Because no separate models were trained for LSE due to a lack of data, we cannot report any accuracy

figures for this language. However, we use the frozen NGT model to extract embeddings for LSE in the

SLR component (see Section 3). As can be seen from Tables 2, 4, and 5, using frozen embeddings yields

similar or better accuracy (depending on how much data is available) as training from scratch. Therefore,

we can assume that the extracted features will be useful for LSE, too.

3. SLR component

The SLR component wraps the trained models in a web service that is integrated into the SignON

framework. This web service allows for online inference using the models as part of the sign-to-text and

sign-to-sign translation pipelines that SignON supports. The web service is implemented in Python using
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the Flask13 framework. It is Dockerized14 to allow for easy local and remote development and

deployment. The code can be found in the SignON GitHub organization under WP3/slr-component.

The SLR component web service has a single endpoint which supports POST requests. This endpoint

receives a video file as a blob15 along with metadata containing the source language of this video (“VGT”,

“NGT”, “BSL”, “ISL”, or “LSE”). This metadata is used to forward the video to the correct SLR model. Note

that for LSE, the NGT model is used to extract embeddings (see Sections 2.2.3 and 2.4.5).

First, the video is processed to extract keypoint information with MediaPipe. These keypoints are

imputed and normalized in the same way as during model training. The keypoints are passed to the SLR

model, which extracts the SL representation (embeddings) and returns it as a JSON list of numbers.

The SLR component can be updated with new models by uploading the model checkpoint file to the

correct directory on the server hosting the component, and updating the references to the checkpoint

files. If architectural changes are made, then the included SLR code must also be updated.

The SLR component itself is called from the WP3 dispatcher and also returns the response to this

dispatcher. The request procedure is shown in Figure 17 and the request handling inside the SLR

component is shown in Figure 18. For further details about the SignON framework architecture, please

refer to Figure 1 of D2.416.

16 D2.4 - Intermediate release of the Open SignON Framework:
https://signon-project.eu/publications/public-deliverables/

15 Blobs are raw data that can be sent along with HTTP requests. For more information, see the Mozilla Web
documentation: https://developer.mozilla.org/en-US/docs/Web/API/Blob.

14 https://www.docker.com/

13 https://flask.palletsprojects.com/
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Figure 17. How the SLR component is called from the application. After step 7, the WP3 dispatcher

forwards the translation request with the SLR features to the WP4 dispatcher, which performs

translation, and forwards its results to the WP5 dispatcher, which formats the output message.

Communication between dispatchers is mediated by a RabbitMQ message broker.

Figure 18. Processing of the request inside the SLR component. The component forwards the request to

the SLR pipeline (see Section 3.2) after selecting the SLR model that corresponds to the source message

language. The SLR pipeline extracts embeddings and returns those to the SLR component.

4. Conclusion and future work

This document describes the SLR models, the pipeline with which they are trained, evaluated, and used

for inference, and the SLR component which integrates these models into the SignON application

framework. The datasets which are used for the five sign languages supported in SignON, i.e., VGT, NGT,

BSL, ISL, and LSE, are also described.
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The proposed SLR pipeline can be used to train new models (whether it is for new SLs or for already

supported ones) or to update (re-train) the existing models with additional data (when such data is

collected and processed).

In the remainder of the project, we will investigate fingerspelling recognition techniques and continuous

sign language recognition. In both cases, the lack of labeled data for the sign languages in the SignON

project limits the immediate applicability of the techniques that will be developed. However, when more

data are collected in the future, these models will be able to be integrated into the SignON framework

through the SLR pipeline and component.

Furthermore, we will investigate more robust pose estimation techniques tuned specifically for the

challenging nature of SL data. Improving the pose estimation techniques is expected to have an

immediate impact on the SLR performance.

Once sufficient data is collected for LSE, we will be able to apply the SLR models to these data to train

language-specific models instead of using the embeddings learned from NGT as we are currently doing.

This will be possible, because we have illustrated and discussed in this deliverable that the same model

can be applied to different SLs, even in very low-resource situations, such as ISL and BSL.
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