
SignON

Sign Language Translation Mobile Application and Open

Communications Framework

Deliverable D2.4 -

Intermediate release of the Open SignON Framework

This project has received funding from the European Union's Horizon 2020
Research and Innovation Programme under Grant Agreement No. 101017255



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Project Information

Project Number: 101017255

Project Title: SignON: Sign Language Translation Mobile Application and Open Communications

Framework

Funding Scheme: H2020-FT-57-2020

Project Start Date: January 1st 2021

Deliverable Information

Title: D2.4 - Intermediate release of the Open SignON Framework

Work Package: 2 - SignON Service and Mobile App

Lead Beneficiary: MAC

Due Date: 28/02/2023

Revision Number: V1.0

Author: John O’Flaherty (MAC), Marco van der Laan (INT), Marcello Paolo Scipioni (FINCONS),

Marco Giovanelli (FINCONS), Riccardo Corrias (FINCONS), Vincent Vandeghinste (INT), Ed Keane

(MAC)

Dissemination Level: Public

Deliverable Type: Demonstrator

© SignON Consortium, 2023 1 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Revision History

Version # Implemented by Revision Date Description of changes

1.0 MAC 20/02/2023 Review, inputs and approval from
all Partners

0.3 MAC 14/02/2023 Updates based on discussions and
inputs from Partners, D7.6 &
further research.

0.2 FIN 27/01/2023 Fincons’ contribution to sections
related to SignON Framework
architecture, API, integration and
deployment.

0.1 MAC 16/12/2022 Initial draft based on WP2
discussions, internal documents
and D2.3.

The SignON project has received funding from the European Union’s Horizon 2020 Programme under

Grant Agreement No. 101017255. The views and conclusions contained here are those of the authors

and should not be interpreted as necessarily representing the official policies or endorsements,

either expressed or implied, of the SignON project or the European Commission. The European

Commission is not liable for any use that may be made of the information contained therein.

The Members of the SignON Consortium make no warranty of any kind with regard to this document,

including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the SignON Consortium shall not be held liable for errors contained herein

or direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

© SignON Consortium, 2023 2 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Approval Procedure

Version # Deliverable Name Approved by Institution Approval Date

V1.0 D2.4 Shaun O’Boyle DCU 01/02/2023

V1.0 D2.4 Marco Giovanelli FINCONS 06/02/2023

V1.0 D2.4 Vincent Vandeghinste INT 13/02/2023

V1.0 D2.4 Gorka Labaka, Adrian
Nuñez

UPV/EHU 10/02/2023

V1.0 D2.4 John O’Flaherty,
Ed Keane

MAC 10/02/2023

V1.0 D2.4 Horacio Saggion UPF 31/01/2023

V1.0 D2.4 Irene Murtagh TU Dublin 20/02/2023

V1.0 D2.4 Lorraine Leeson TCD 14/02/2023

V1.0 D2.4 Karim Dahdah VRT 14/02/2023

V1.0 D2.4 Mathieu De Coster UGent 30/01/2023

V1.0 D2.4 Caro Brosens VGTC 14/02/2023

V1.0 D2.4 Henk van den Heuvel RU 02/02/2023

V1.0 D2.4 Catia Cucchiarini TaalUnie (NTU) 13/02/2023

V1.0 D2.4 Bram Vanroy KU Leuven 13/02/2023

V1.0 D2.4 Davy Van Landuyt EUD 30/01/2023

V1.0 D2.4 Mirella De Sisto TiU 07/02/2023

© SignON Consortium, 2023 3 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Acronyms

The following table provides definitions for acronyms and terms relevant to this document.

Acronym Definition

API Application Programming Interface

App SignON Communication and Translation Mobile Application

ASL American Sign Language

ASR Automated Speech Recognition

BSL British Sign Language

CUDA
CUDA is a software layer that gives direct access to the GPU's virtual
instruction set and parallel computational elements, for the execution of
compute kernels

DHH Deaf and Hard of hearing

DoA Description of the Action

FTP File Transfer Protocol

GA Grant Agreement

GB Gigabyte

GPU Graphical Processor Unit

HDD Hard-Disk Drives

HTML Hypertext Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

ICT Information and Communication Technologies

InterL Interlingua

IS International Sign

ISCSI Internet Small Computer System Interface

© SignON Consortium, 2023 4 of 47

https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Compute_kernel
https://en.wikipedia.org/wiki/Compute_kernel


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

ISL Irish Sign Language

ITIL Information Technology Infrastructure Library

LSE Spanish Sign Language (Lengua de Signos Española)

ML Machine Learning

MT Machine Translation

NFS Network File System

NGT Sign Language of the Netherlands (Nederlandse Gebarentaal)

NLP Natural Language Processing

RAID Redundant Array of Independent Discs

REST Representational state transfer

SFTP Secure File Transfer Protocol

SignON Both the service and this project (GA 101017255)

SL Sign Language

SLR Sign Language Recognition

SLTT Sign-Language-To-Text

SSD Solid state drives

STT Speech-To-Text

TB Terabyte

TTS Text-to-Speech

TTSL Text-to-Sign-Language

UI User Interface

URL Uniform Resource Locator

UX User Experience

© SignON Consortium, 2023 5 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

VGT Flemish Sign Language (Vlaamse Gebarentaal)

VM Virtual Machine

VPN Virtual Private Network

WP Work Package

WWW World Wide Web

© SignON Consortium, 2023 6 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Table of Contents

Executive Summary 9

1. Introduction 10

2. Updated Architecture of the Cloud Platform 11

2.1 SignON Orchestrator 13

2.2 SignON Dispatchers 15

2.3 Object Storage 16

3. APIs 18

3.1 SignON Mobile App and SignON Orchestrator communication (OpenAPI) 19

3.2 SignON Orchestrator and SignON Dispatchers communication (AsyncAPI) 22

4. Infrastructure 24

4.1 Repository 24

4.2 Hardware 25

4.2.1 GPUs support 25

4.3 Operating system 25

4.3.1 First Development phase 25

4.3.2 Dev VMs, Production VM 26

4.3.3 Second development phase 26

4.3.4 T2.4 facilitate data capturing storage 27

4.4 Developer access 27

4.5 Security 28

5. Integration and Deployment 30

5.1 Local integration 30

5.2 Local Testing 32

5.2.1 Test#01: Check Orchestrator and API’s Version 33

5.2.2 Test#02: Request URL to Upload an Object to the storage 33

5.2.3 Test#03: Upload File to the Object Storage (Minio) 34

5.2.4 Test#04: Simulate Message from App through cURL 36

5.3 Deployment and Testing 39

6. SignON Mobile Apps 40

6.1 SignON Mobile Communications App 40

6.2 SignON ML Training App 42

7. Conclusions and Recommendations 43

Annex - SignON ML App User Guide 45

© SignON Consortium, 2023 7 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

List of Figures

Figure 1 SignON Framework Architecture 11
Figure 2 SignON infrastructure 15
Figure 3 VPN access point in the SignON infrastructure 16
Figure 4 SignON Mobile App V1.0 screens 19
Figure 5 How to use the SignON App V1.0 20
Figure 6 SignON App V1.0 Functionality 20
Figure 7 SigON ML Training App 21

List of Tables
Table 1 High level view of fields in message 20
Table 2 fields composing App 21
Table 3 Fields required for requesting a temporary URL 22
Table 4 Fields in the response after requesting a temporary URL 22

© SignON Consortium, 2023 8 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Executive Summary

This deliverable is the intermediate release of the Open SignON Framework as a demonstrator. This

report describes the progress of the shared SignON platform, which consists of two separate entities:

the repository with reference data and training data, and the platform with processing space to host

both developing and developed/production components of the SignON Framework service, software

and data, since D2.3 “First release of the SignON Open Cloud platform” was delivered in January

2022.

© SignON Consortium, 2023 9 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

1. Introduction

SignON is researching and developing the SignON Transmodal Machine Translation Mobile

Application communication service that uses machine translation to translate between sign and

spoken languages. This service will facilitate the exchange of information among deaf and hard of

hearing (DHH), and hearing individuals. In this user-centric and community-driven project we are

tightly collaborating with European DHH communities to (re)define use-cases, co-design and

co-develop the SignON service and application, assess the quality and validate their acceptance. Our

ultimate objective is the fair, unbiased and inclusive spread of information and digital content in

European society.

SignON will be a free, open-source application and framework for conversion between video

(capturing and understanding sign languages), audio and text and translation between signed and

spoken languages. To facilitate these tasks, SignON uses a common representation for mapping of

video, audio and text into a unified space that is used for translating into the target modality and

language. To ensure wide uptake, improved sign language (SL) detection and synthesis, as well as

multilingual speech processing on mobile devices for everyone, we will deploy the SignON service as

a smart phone application running on standard modern devices.

The SignON App has a lightweight interface (see section 6). The SignON Framework of services,

however, is distributed on a cloud platform (see section 2-5) where the computationally intensive

services are executed. The project is driven by a focused set of use-cases tailored towards the sign

language communities. We target signed and spoken languages from Ireland (Irish Sign Language,

Irish and English), Britain (British Sign Language and English), the Netherlands (Sign Language of the

Netherlands/Nederlandse Gebarentaal and Dutch), the Flanders region of Belgium (Flemish Sign

Language, Flemish and Dutch) and Spain (Spanish Sign Language and Spanish). Nevertheless, SignON

will eventually incorporate machine learning capabilities that will allow (i) learning new sign, written,

and spoken languages; (ii) style-, domain- and user-adaptation and (iii) automatic error correction,

based on user feedback.

This report describes the progress of the shared SignON Framework platform since the D2.3 “First

release of the SignON Open Cloud platform” was delivered in January 2022.

© SignON Consortium, 2023 10 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

2. Updated Architecture of the Cloud Platform

The internal architecture of the SignON Framework is composed of different components, namely,

the SignON Orchestrator, the SignON Dispatchers, the SignON Pipeline Components (e.g., Sign

Language Recognition (SLR), Natural Language Processing (NLP), Automated Speech Recognition

(ASR), etc.) and the Object Storage (see Figure 1). In this section is presented a detailed description

of each component and how they communicate with each other.

Figure 1 SignON Framework Architecture

The SignON Mobile App communicates through a REST API with the SignON Orchestrator, while the

communication between SignON Orchestrator and SignON Dispatchers is supported by a message

broker.

Depending on the input (text, audio or video) and the requested output (text, audio, avatar), the

SignON Orchestrator invokes the SignON Dispatchers, which in turn contact the Object Storage (if

needed) and the SignON Pipeline Components responsible for the relative processing.

In case the input message from the SignON Mobile App contains an audio or video file, the SignON

Mobile App will first make a request to the SignON Orchestrator, which in turn contacts the Object

Storage component to return a pre-signed URL. The SignON Mobile App can then use the pre-signed

URL to directly upload the file to the Object Storage.

© SignON Consortium, 2023 11 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

In all the other cases, when the SignON Orchestrator receives a message from the SignON Mobile

App, it delivers the message to the SignON Dispatchers that in turn invokes all the other SignON

Pipeline Components to elaborate the response message.

In detail, as shown in Figure 2, once the message is received by the first SignON Dispatcher for “WP3

- Source Language Processing”, depending on the type of input given and the output requested by

the SignON Mobile App, it will invoke the relative SignON Pipeline Components through a REST API

call to process the message and add information for the translation task. Then the resulting message

is given to a temporary queue that connects the first SignON Dispatcher with the second SignON

Dispatcher for “WP4 - Intermediate Representation”. When the second SignON Dispatcher receives a

message from the temporary queue, it invokes the Text to Text Translation component to add

additional information on the translation. Once finished, like in the previous step, the resulting

message is sent to a temporary queue that connects the second SignON Dispatcher with the third

SignON Dispatcher for “WP5 - Message Synthesis”. The third SignON Dispatcher like the two previous

dispatchers is connected through REST API to external components to generate the final version of

the message that is returned to the SignON Orchestrator and from there to the SignON Mobile App.

Figure 2 Sequence diagram of the SignON Framework

© SignON Consortium, 2023 12 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

2.1 SignON Orchestrator

As previously explained in D2.21, the SignON Orchestrator component is part of the SignON

Framework architecture and connects the SignON Mobile App with the SignON Pipeline

Components. More precisely, the source message from the SignON Mobile App is handled through

the SignON Orchestrator, which queues it towards the SignON Pipeline Components through the RPC

pattern of RabbitMQ2 message broker.

The RPC pattern is used in the SignON Framework to take advantage of a stateless architecture. In

fact, the RPC pattern is a request–response communication, initiated by the client, which sends a

request message to a known remote server to execute a specified procedure. The remote server

sends a response to the client, and the application continues its process.

To implement the SignON Orchestrator different technologies and frameworks have been used, and

the component is mainly based on the Spring Boot3 framework in Java.

Furthermore, part of classes in the SignON Orchestrator are automatically generated starting from

the AsyncAPI4 and OpenAPI5 YAML files through the Swagger Codegen6 and AsyncAPI/generator7

tools, to ensure an API-first approach and fast prototyping (more information on the topic are

available in section “3 - APIs”).

More technically the SignON Orchestrator project is structured as follows:

● Controllers Packages: Contains the controllers that administer the relative API calls.

○ Inference Storage Auth Controller: Returns a pre-signed URL for the SignON Mobile

App to directly upload the file on the Object Storage. More precisely, in order to

return a pre-signed URL, the object name of the file is generated by the SignON

Orchestrator according to the following pattern:

appInstanceID + `/` + timestamp + `_` + UUID + `.` + fileFormat

● The “appInstanceID” corresponds to the SignON Mobile App Instance

Identifier.

7 https://www.asyncapi.com/tools/generator

6 https://swagger.io/tools/swagger-codegen/

5 https://www.openapis.org/

4 https://www.asyncapi.com/

3 https://spring.io/projects/spring-boot

2 https://www.rabbitmq.com/

1 D2.2: SignON Services Framework Architecture
https://signon-project.eu/wp-content/uploads/2022/01/SignON_D2.2_Services_Framework_Architecture_v1.0
.pdf

© SignON Consortium, 2023 13 of 47

https://www.asyncapi.com/tools/generator
https://swagger.io/tools/swagger-codegen/
https://www.openapis.org/
https://www.asyncapi.com/
https://spring.io/projects/spring-boot
https://www.rabbitmq.com/
https://signon-project.eu/wp-content/uploads/2022/01/SignON_D2.2_Services_Framework_Architecture_v1.0.pdf
https://signon-project.eu/wp-content/uploads/2022/01/SignON_D2.2_Services_Framework_Architecture_v1.0.pdf


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

● The “timestamp” corresponds to the time when the message has been

received by the SignON Orchestrator from the SignON Mobile App.

● The “UUID” corresponds to a 128-bit universally unique identifier.

● The “fileFormat” corresponds to the extension of the file that is uploaded to

the Object Storage component.

○ Orchestrator Controller: For each SignON Mobile App request, a new thread is

created. It prepares the message appending timestamps and queue identifiers of the

RabbitMQ RPC pattern, sends it and waits for a response. Once the SignON Pipeline

Components have processed and returned the message, the controller deletes the

uploaded file (if any) from the Object Storage and finally returns the message to the

SignON Mobile App.

○ Endpoints Controller: Returns all the available endpoints that can be called to

interact with the SignON Orchestrator.

○ Status Controller: Returns a boolean that corresponds to whether the SignON

Orchestrator is ready.

○ Version Controller: Returns the current version for the SignON Orchestrator, SignON

OpenAPI and SignON AsyncAPI.

● Errors Reporting Packages:

Contains the different types of errors that can be returned internally from both the SignON

Orchestrator or the SignON Dispatchers and externally from the Object Storage or RabbitMQ.

● Resources:

Contains files describing the SignON OpenAPI and SignON AsyncAPI. These structures are

used to automatically generate the Java files that are needed to manage the communication

between the different components in the SignON Framework.

● Target:

Contains the Java files automatically generated from the SignON OpenAPI and SignON

AsyncAPI needed to manage the communication between the different components of the

SignON Framework.

As shown, a system of Error Reporting is introduced in the SignON Orchestrator, to support the

SignON Mobile App to distinguish different exceptions, manage them and eventually inform the user.

This has been done by dividing errors into categories and classifying them in Internal and External

exceptions. This system allows also to speed up the internal testing by possibly returning the

© SignON Consortium, 2023 14 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

complete stack trace of the error, with a debug mode that can be enabled only from server side

through the relative configuration file.

In fact, to allow the SignON Orchestrator to be configurable, a YAML configuration file has been

prepared, allowing modification of settings regarding RabbitMQ, the Object Storage and other

internal parameters.

2.2 SignON Dispatchers

As previously introduced in D2.28, at first a SignON Pipeline Simulator was designed to enable the

fast prototyping approach and integrate the SignON Mobile App even if the SignON Pipeline

Components were still under development.

Then, in order to allow the SignON Pipeline Components to analyse a message without implementing

the communication channels between them, the SignON Pipeline Simulator has been replaced with a

solution based on SignON Dispatchers. This way, when a message is given in input from the Mobile

App, it is pre-processed by the SignON Orchestrator, and then it is passed with a “piggyback”

approach9 to a series of three SignON Dispatchers: one for the “WP3 - Source Language Processing”,

one for the “WP4 - Intermediate Representation” and one for “WP5 - Message Synthesis”. The aim of

each of these SignON Dispatchers is to connect different SignON Pipelines Components and pass the

message to the next SignON Dispatcher until the last SignON Dispatcher returns it to the SignON

Orchestrator, which in turn forwards it to the SignON Mobile App.

The communication between the three dispatchers is done through the Python library “pika”10. This

library allows connecting them to the RabbitMQ11 message broker, using the publish/subscribe

approach12.

The communication between the SignON Pipeline Components and the SignON Dispatchers are then

made through REST API calls.

12 https://www.rabbitmq.com/tutorials/tutorial-three-python.html

11 https://www.rabbitmq.com/

10 https://pypi.org/project/pika/

9 i.e., the original message is augmented with some information and passed to the next receiver

8 D2.2: SignON Services Framework Architecture
https://signon-project.eu/wp-content/uploads/2022/01/SignON_D2.2_Services_Framework_Architecture_v1.0
.pdf

© SignON Consortium, 2023 15 of 47

https://www.rabbitmq.com/tutorials/tutorial-three-python.html
https://www.rabbitmq.com/
https://pypi.org/project/pika/
https://signon-project.eu/wp-content/uploads/2022/01/SignON_D2.2_Services_Framework_Architecture_v1.0.pdf
https://signon-project.eu/wp-content/uploads/2022/01/SignON_D2.2_Services_Framework_Architecture_v1.0.pdf


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Each message that goes through the SignON Dispatchers has the form of a JSON object, determined

by the YAML file used for the AsyncAPIs creation (a more detailed explanation can be found in

section “3 - APIs”).

The SignON Orchestrator is connected with the first SignON Dispatcher for “WP3 - Source Language

Processing” through an RPC queue created with RabbitMQ. The same applies to the last SignON

Dispatcher for “WP5 - Message Synthesis” that communicates with the SignON Orchestrator with the

same RPC queue. The communication between the SignON Dispatchers is based on temporary

queues instead.

If needed, the SignON Dispatchers can retrieve audio and video files from the Object Storage through

the Object ID specified in the message (see section “2.3 - Object Storage”). Once used, the files are

actively deleted by the SignON Dispatcher itself in order to preserve the storage and ensure privacy.

Finally, a YAML configuration file has been prepared also for the SignON Dispatchers, allowing

modification of settings regarding RabbitMQ, the Object Storage and other internal parameters.

2.3 Object Storage

To allow the SignON Mobile App to provide the previously mentioned SignON Pipeline Components

with audio and video files, a component capable of uploading, storing and downloading objects is

needed. For this task, MinIO13, an open source Object Storage, has been chosen. This component can

be connected with the dispatchers through the use of the “boto3”14 Python library which is AWS S315

compliant and therefore enabling, if needed, the possibility of migrating to an “Infrastructure As A

Service” (IAAS) approach.

By default, MinIO files can be uploaded only by an authorised account. To ease the use of the SignON

Framework and avoid accounts creation, the SignON Mobile App will request a pre-signed URL to

grant time-limited permission to upload an object.

In order to do so and as shown in Figure 2, these steps are followed:

1. The SignON Mobile App shall request a pre-signed URL to the SignON Orchestrator.

15 https://aws.amazon.com/s3/

14 https://pypi.org/project/boto3/

13 https://min.io/

© SignON Consortium, 2023 16 of 47

https://aws.amazon.com/s3/
https://pypi.org/project/boto3/
https://min.io/


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

2. The SignON Orchestrator, as an authorised component, contacts the MinIO system to obtain

a time-limited pre-signed URL for a specific object and a specific SignON Mobile App Instance

ID.

3. The SignON Orchestrator returns the pre-signed URL to the SignON Mobile App.

The MinIO Object Storage is divided into buckets or containers to group the files. For the SignON

purposes, every bucket is divided in folders related to each SignON Mobile App Instance ID, to allow

a better debugging procedure in case of malfunctioning.

As previously mentioned in the SignON Orchestrator section, the MinIO objects are actively deleted

once the processing is completed.

Furthermore, to configure the MinIO Object Storage, a script has been prepared to set accounts

authorisation to upload and download objects, to apply different policies regarding the objects

stored in the buckets and to define the endpoint on which MinIO has been mounted on.

© SignON Consortium, 2023 17 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

3. APIs

This section includes a detailed explanation on how the SignON Framework communication is

implemented, how the messages are composed and how the SignON Orchestrator classes, which

handle the connection between the SignON mobile App, the SignON Orchestrator and the SignON

Pipeline, are automatically generated.

In particular, the following OpenAPI16 section refers to the REST API used between the SignON Mobile

App and the SignON Orchestrator, while the AsyncAPI17 section refers to the description of the

communication between the SignON Orchestrator and the SignON Dispatchers.

Figure 3 Message Composition (Blue Boxes: OpenAPI, Green Boxes: AsyncAPI)

In Figure 3 are shown the main fields of the message and the four steps of the “piggyback” approach

mentioned in section “2 - Updated Architecture of the Cloud Platform”: at first the SignON Mobile

App adds the “App” data; then the SignON Orchestrator adds the “OrchestratorRequests” data; next

the SignON Pipeline Components add the “SourceLanguageProcessing”, the

“IntermediateRepresentation” and “MessageSynthesis” data; finally the SignON Orchestrator adds

the “OrchestratorResponse” data prior to send the message back to the SignON App.

In the table below (Table 1), these main fields are described in detail.

17 https://www.asyncapi.com/

16 https://www.openapis.org/

© SignON Consortium, 2023 18 of 47

https://www.asyncapi.com/
https://www.openapis.org/


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Field Name Description

App Reports the original request data (the ones sent in the cURL
request)

OrchestratorRequest Reports the data appended by the SignON Orchestrator
when the request is sent to the first SignON Dispatcher (i.e.,
SignON Orchestrator version, timestamp of message sending
and current MinIO bucket name)

SourceLanguageProcessing Reports the data appended by the SignOn Pipeline
Components called by the first SignON Dispatcher of “WP3 -
Source Language Processing” (i.e. components version,
timestamp of message reception and specific processing
fields)

IntermediateRepresentation Reports the data appended by the SignON Pipeline
Components called by the second SignON Dispatcher of
“WP4 - Intermediate Representation” (i.e. components
version, timestamp of message reception and specific
processing fields)

MessageSynthesis Reports the data appended by the SignON Pipeline
Components called by the third and last SignON Dispatcher
of “WP5 - Message Synthesis” (i.e. components version,
timestamp of message reception and specific processing
fields)

OrchestratorResponse Reports the data appended by the SignON Orchestrator,
once the message is received from the last SignON
Dispatcher (i.e. timestamp of message reception)

Table 1 High level view of fields in message

All these fields are shared across OpenAPI and AsyncAPI. Therefore, to avoid error prone

redundancies in the documentation and generation of classes, the fields present in the previous list

are described in a “shared” schema used by both OpenAPI and AsyncAPI YAML files.

3.1 SignON Mobile App and SignON Orchestrator communication (OpenAPI)

The SignON OpenAPI describes the SignON Mobile App interaction with the SignON Orchestrator,

providing these endpoints:

● /message POST:

This endpoint is called to send a message from the SignON Mobile App to the SignON

Orchestrator and to translate it through the SignON Pipeline Components. The following

table (Table 2) contains a description of the required fields that shall be sent.

© SignON Consortium, 2023 19 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Field Name Description

sourceKey Object Name saved on the Object Storage.

sourceText Text that the user wants to be translated.

sourceLanguage Language for the input given by the user.

sourceMode Mode in which the message is given by the user (e.g. text,
audio, video).

sourceFileFormat Extension for the file that the user is sending.

sourceVideoCodec Codec used to compress the video.

sourceVideoResolution Resolution used for the video.

sourceVideoFrameRate Frame rate used for the video.

sourceVideoPixelFormat Pixel format used for the video.

sourceAudioCodec Codec used to compress the audio.

sourceAudioChannels Channels used for the audio.

sourceAudioSampleRate Sample rate used for the audio.

translationLanguage Language for the output that the user wants to receive.

translationMode Mode for the output that the user wants to receive (e.g. text,
audio, avatar).

appInstanceID Identifier for instance of the SignON Mobile App.

appVersion Version number related to the SignON Mobile App.

T0App Timestamp relative to when the message has been sent from
the SignON Mobile App to the SignON Orchestrator.

Table 2 fields composing App

The response returned by this endpoint contains all the message fields previously listed in

the section “3 - API” introduction (see Table 1).

● /inference-storage-auth POST:

This endpoint is called to request a temporary pre-signed URL to upload a file to the Object

Storage. The following table (Table 3) contains the description of the fields that shall be sent

from the SignON Mobile App to the SignON Orchestrator to request a temporary pre-signed

URL.

© SignON Consortium, 2023 20 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Field Name Description

appInstanceID Identifier for instance of the SignON Mobile App.

fileFormat Format of the file to be uploaded in the Object Storage.

Table 3 Fields required for requesting a temporary URL

The Response message sent by the SignON Orchestrator to the SignON Mobile App is

composed by the fields in the following table (Table 4).

Field Name Description

PreSignedURL Pre-signed URL to upload an object in MinIO.

ObjectName Name of the object once uploaded on MinIO.

Table 4 Fields in the response after requesting a temporary URL

● /version GET:

This endpoint is called to check version numbers relative to the SignON Orchestrator, the

SignON OpenAPI and the SignON AsyncAPI.

● /status GET:

This endpoint is called to check whether the SignON Orchestrator component is ready.

● /endpoints GET:

This endpoint is called to list the different endpoints available in the SignON Orchestrator.

As mentioned in section “2.1 - SignON Orchestrator”, through the use of Swagger Codegen18, it is

possible to generate not only the SignON Orchestrator JAVA classes from the SignON OpenAPI, but

also the SignON OpenAPI documentation in HTML or Markdown format as shown in Figure 4.

18 https://swagger.io/tools/swagger-codegen/

© SignON Consortium, 2023 21 of 47

https://swagger.io/tools/swagger-codegen/


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Figure 4 Screenshot markdown OpenAPI documentation

3.2 SignON Orchestrator and SignON Dispatchers communication (AsyncAPI)

The SignON AsyncAPI has been created in order to define the communication between the SignON

Orchestrator and the SignON Dispatchers.

The schemas are the same described in the introduction of section “3 - API” as they are shared also

with the SignON OpenAPI.

The same strategy implemented for the automatic generation of Java classes for the SignON

Orchestrator has been used also for the SignON AsyncAPI, to enable the aforementioned API-first

and fast-prototyping approach. These JAVA classes have been generated using AsyncAPI/generator19

19 https://www.asyncapi.com/tools/generator

© SignON Consortium, 2023 22 of 47

https://www.asyncapi.com/tools/generator


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

through a template called “java-spring-template” (for further details please refer to its official

documentation20).

Moreover, the AsyncAPI/generator has enabled the generation of the SignON AsyncAPI

documentation in HTML or Markdown format as shown in Figure 5.

Figure 5 Screenshot HTML AsyncAPI documentation

20 https://github.com/asyncapi/java-spring-template

© SignON Consortium, 2023 23 of 47

https://github.com/asyncapi/java-spring-template


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

4. Infrastructure

The SignON Framework infrastructure is as follows:

● Repository:

○ HP Storageworks SAN platform
○ 64TB storage in RAID 6 with extra hot standby
○ Hardened Microsoft operating system with native ssh daemon
○ NFS subsystem for sharing data
○ 2x 1 GB Network Interface Card

● Hosting platform

o 32 core Intel Xeon
o A40 GPU
o 256GB DDR4 RAM
o 4TB SSD Storage
o 15 TB Discs Storage, RAID5
o 4x 1GB Network Interface card

This summary is elaborated in the following subsections.

4.1 Repository

A storage system of 64TB with data is assigned for the SignON server by consortium Partner INT in

order to create a private repository in which SL data can be stored for project-internal use. The server

has external connections to the hosting system by implementing NFS server capabilities. It is an SFTP

based system which features encrypted data transport. SFTP login information has been passed on to

all consortium partners that work with the datasets. This repository and the associated data sets are

described in deliverable D.3.1 Internal repository with language data resources.

The hosting platform is also located at INT and hosts the central services of the final application. A

detailed description of the architecture of the SignON Mobile App can be found in public deliverable

D.2.221, which also describes which parts are hosted on a central server, such as the SignON

Orchestrator, the Message-Broker and several of the language specific analysis and generation

components.

21 D2.2: SignON Services Framework Architecture
https://signon-project.eu/wp-content/uploads/2022/01/SignON_D2.2_Services_Framework_Architecture_v1.0
.pdf

© SignON Consortium, 2023 24 of 47

https://signon-project.eu/wp-content/uploads/2022/01/SignON_D2.2_Services_Framework_Architecture_v1.0.pdf
https://signon-project.eu/wp-content/uploads/2022/01/SignON_D2.2_Services_Framework_Architecture_v1.0.pdf


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

4.2 Hardware

The SignON server hardware consists of 2x16 Intel Xeon 6346 cores, 2xT4 NVIDIA GPU, 256GB

memory and a mixed storage with both SSD and HDD. Its goldtype Xeon processors facilitate

workloads with a lot of contact switching, as experienced with virtualisation techniques like Docker

or vmware-ESX type virtualisation.

Storage for the hosting platform is a 15TB storage array with built-in redundancy against hardware

error (RAID). RAID storage can be relatively slow22, though RAID 0 is faster than non-RAID

configurations, and RAID1 is used here, so for better performance 4TB fast storage is provided by

SSD. Our first intention to use a tiered storage system has been under discussion because a tiered

system does not offer advantages in processing large amounts of unique data.

4.2.1 GPUs support

The SignON Framework platform has an A40 GPU, which has more than four times the CUDA cores

of a T4 GPU. This provides the raw power and leaves room for expansion should more power ever be

needed.

4.3 Operating system

The operating system and subsequent configuration of the software was done in 2 phases. After

2022 the decision was made to remove the ESX layer and continue with Docker as the only

virtualisation layer. This decision was mainly prompted by the licence cost for virtualised GPU on ESX.

The supporting services like VPN, docker-registry and others were not affected by the change from

ESX to docker.

4.3.1 First Development phase

The hardware has been taken up into the INT ESX-based cloud. In the development phase,

contributors will have their own VM with Docker stack. The repository is available to each individual

VM via an NFS or ISCSI connection. In later stages of development the separate VMs can be

consolidated into a single Docker host if the different contributors consider this to be beneficial.

22 Does RAID slow down performance? - Quora

© SignON Consortium, 2023 25 of 47

https://www.quora.com/Does-RAID-slow-down-performance#:~:text=Does%20RAID%20slow%20down%20I,when%20you%20use%20random%20access.


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Figure 6 SignON infrastructure

4.3.2 Dev VMs, Production VM

After initial deployment, 1 VM was created as a pilot in the new environment. The first prototype of

the SignON Orchestrator was deployed here. The configuration of the VM and especially the firewall

and reverse proxy was tuned to the requirement of this first prototype. This machine was used as a

template for 4 new VM’s for each work packet. The final template was provisioned with 2 CPUs,

16GB memory and 1 TB HD, and 2 nics. 1 nic was exposed to the reverse proxy and 1 connected to

the management vpn network (see section “4.4 - Security”). Each developer was provided VPN and

SSH access to deploy containers on the VM intended for his work packet. This facilitated

development of the separate workgroups without getting in each other’s way.

One VM was deployed as a Docker registry to save and maintain the Docker images deployed by the

developers. There were initial problems deploying the registry as DNS traffic was not routed to and

from the management network. To facilitate safe DNS a forwarding DNS-server was implemented in

the management network. The DNS server uses the INT DNS servers as forwarders.

Every VM was connected to the internet by a reverse proxy that proxied an instance of the storage

and orchestrator component. The reverse proxy was based on Apache webserver but requirements

for the storage component of the orchestrator prompted a change to an NGINX based reverse proxy.

This engine could better solve URL discrepancies in the outer and inner situation of the proxied

requests using the rewrite module.

4.3.3 Second development phase

In the second development phase, steps were taken to reconfigure the OS layer into a single OS

(Ubuntu LTS) with Docker. The single virtualisation layer means that all containers share the same

© SignON Consortium, 2023 26 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

hardware but Docker was configured with multiple virtual networks to separate development- and

production-containers on network level. The development and production container ports were

remapped on the reverse proxy accordingly.

Figure 7 Consolidation of all containers in 1 docker host

4.3.4 T2.4 facilitate data capturing storage

An NFS connection from the docker host to the SignON data repository was mounted in the

filesystem to facilitate storage for captured data as described in project requirements described

under T2.4.

4.4 Developer access

To facilitate developer access, a VPN access point was created. Using open source software a secure

point-to-point connection can be established over the internet, routing traffic from the developers

workstation to the management network used to access the VM.

The VPN software used is OpenVPN23, which has been used successfully for the work-at-home

environment of the INT. A central access point to a management network was created instead of a

VPN on every individual container, as this is easier to manage.

23 https://openvpn.net/

© SignON Consortium, 2023 27 of 47

https://openvpn.net/


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Figure 8 VPN access point in the SignON infrastructure

4.5 Security

Network security on the exposed systems is established by multiple layers of network filtering using

firewalls, and exposing as little as possible to the internet to minimise the attack surface. The

platforms' operating systems are secured according to best practices, as recommended by Leiden

University and SURF, the Dutch academic ICT cooperation organization. Brute force attacks are

mitigated against by using the fail2ban24 system that blocks network addresses after too many failed

logins.

Security patches are evaluated on release to determine severity. Important patches are implemented

as fast as possible, regular patches are implemented once a month. Regular external scans are done

by security teams from Leiden University and SURF, to expose vulnerabilities and check compliance

with the security policy of these organisations.

Physical access to the hardware is restricted to INT support personnel in a secured data centre.

System backups are made daily. Emergency recovery backups are kept for 2 weeks, long term data

backups are kept for 7 years in a daily/monthly/yearly classic tiered backup schedule.

24 https://www.fail2ban.org/wiki/index.php/Main_Page

© SignON Consortium, 2023 28 of 47

https://www.fail2ban.org/wiki/index.php/Main_Page


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

INT provides a team of system administrators to support SignON tenants. INT uses the ITIL process

library25 and uses email as their primary means of communication. Service level is best effort and

during office hours.

25 https://www.servicenow.com/lpebk/itil4-guide.html

© SignON Consortium, 2023 29 of 47

https://www.servicenow.com/lpebk/itil4-guide.html?campid=29169&cid=p:itsm:dg:nb:prsp:itsm_prsp:emea:all&s_kwcid=AL!11692!3!565543456792!b!!g!!%2Bitil%20%2Blibrary&ds_c=GOOG_EMEA_All_EN_DEMANDGEN_ITSM_PRSP_NonBrand_BMM_&cmcid=71700000065322115&ds_ag=ITIL_BMM&cmpid=58700005786399355&ds_kids=p52801655988&gclid=Cj0KCQiA_8OPBhDtARIsAKQu0gaR-NMeEpoCRDNBV5PCnSSH2M0xKk9RxftF6dZZ8-OorR9_JylmtTQaAoLuEALw_wcB&gclsrc=aw.ds


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

5. Integration and Deployment

As mentioned in section “2 - Updated Architecture of the Cloud Platform”, a number of components

developed by different partners are involved in the pipeline that processes a message. To allow a

simplified deployment, Docker26 was chosen as the virtualisation system. For this reason, each

component shall be firstly developed, then packed in a container, next pushed to the SignON

Container Registry and finally deployed in the SignON Server.

To allow each partner to develop and test its components without interfering with the others, the

process has been divided in two different phases:

● Local integration and testing: the entire SignON Framework is run on each partner’s local

development machine, and the relative SignON Dispatcher code can be edited in order to

accommodate the calls to the relative dockerised version of the SignON Pipeline

Components of the partner. The SignON App requests can be simulated with cURL27.

● Deployment and testing: once the local integration and testing succeed, a new Docker image

with the updated version of the SignON Dispatcher is created. Then all the components are

deployed to the SignON Server (for further details, please check section “4 - Infrastructure”)

and then the system is ready to be tested.

Those two phases are described in detail in the following sections.

5.1 Local integration

To start the integration process with the SignON Framework on a local machine, different

repositories have been prepared and the steps below shall be followed:

● Docker Compose Repository

1. Clone Docker Compose Repository

2. Open the Docker Compose28 file and comment the section of code relative to the

relevant SignON Dispatcher (as example, in Figure 9, the section relative to the

“signon-wp3-dispatcher” is commented).

28 https://docs.docker.com/compose/

27 https://curl.se/

26 https://www.docker.com/

© SignON Consortium, 2023 30 of 47

https://docs.docker.com/compose/
https://curl.se/
https://www.docker.com/


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Figure 9 Example of Docker Compose File with commented SignON Dispatcher

3. Before Launching all the components it is necessary to login into the SignON

Container Registry in order to download the currently working images of the various

components.

4. Next, the Docker Compose shall be launched with:

docker-compose up

5. In the root of the project shall be created a folder called “minioUpload”, where can

be placed all the files to be used for the upload during the testing.

● Dispatcher Repository

1. Now that the Docker Compose has been launched, the repository of the SignON

Dispatcher, which shall be integrated with the SignON Pipeline Components of the

partner, shall be cloned. As previously mentioned, three types of SignON Dispatchers

are available:

© SignON Consortium, 2023 31 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

i. WP3-dispatcher: This is the first SignON Dispatcher that receives the

message in the “piggyback” approach. It will be connected to the SignON

Pipeline Components of the partner related to the “WP3 - Source Language

Processing”.

ii. WP4-dispatcher: This is the second SignON Dispatcher that receives the

message in the “piggyback” approach. It will be connected to the SignON

Pipeline Components of the partner related to the “WP4 - Intermediate

Representation”.

iii. WP5-dispatcher: This is the third and last SignON Dispatcher that receives

the message in the “piggyback” approach. It will be connected to the SignON

Pipeline Components of the partner related to the “WP5 - Message

Synthesis”.

2. Once the corresponding repository is cloned and the code adjusted to accommodate

the SignON Pipeline Components of the partner, the “run_dockerised.sh” script will

be launched from a terminal inside the SignON Dispatcher cloned repository

(otherwise the files are not recognised). This script takes care of running the SignON

Dispatcher code in a Docker container, to allow simulating the communication with

the other deployed components.

Now the system is ready to be tested locally, as explained in the next section.

5.2 Local Testing

For the local testing, the SignON App requests can be simulated with cURL commands. Those

commands will be run from within the SignON Orchestrator container with:

docker exec –it signon-orchestrator bash \

–c “cd minioUpload && bash”

N.B. From now on, all the commands are run inside the “minioUpload” folder of the SignON

Orchestrator container. If correctly configured, all the test files previously placed in the

“minioUpload” folder of the Docker Compose Repository now should be visible (see previous section

“5.1 - Local integration”).

© SignON Consortium, 2023 32 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

5.2.1 Test#01: Check Orchestrator and API’s Version

This is the first and most basic call that can be invoked, and it works as a sanity check to verify that

the SignON Orchestrator is up and running.

Request:

curl -X 'GET' 'http://localhost:8080/version'

Response example:

{

"Orchestrator":"10.0.0",

"OpenAPI":"9.0.0",

"AsyncAPI":"7.0.0"

}

5.2.2 Test#02: Request URL to Upload an Object to the storage

As previously mentioned, objects (e.g. *.mp4 files) can be uploaded to the Object Storage by the

SignON Mobile App without the need to have a MinIO account, because the SignON Orchestrator can

return a pre-signed URL. The generated pre-signed URL is set to expire after 300s (5 minutes) and

allows the SignON Mobile App to upload the file within this time frame. The following cURL simulates

a SignON Mobile App request of a pre-signed URL that can later be used to upload an object .

Request pattern:

curl -X 'POST' \

'http://localhost:8080/inference-storage-auth' \

-H 'accept: application/json' \

-H 'Content-Type: application/json' \

-d '{

"appInstanceID": <APP_INSTANCE_ID>,

"fileFormat": <FILE_EXTENSION>

}'

Request example:

curl -X 'POST' \ 'http://localhost:8080/inference-storage-auth'\

-H 'accept: application/json' \

-H 'Content-Type: application/json' \

-d '{

"appInstanceID": "WP3MODULE",

© SignON Consortium, 2023 33 of 47

https://api.dev.signon-project.eu/orchestrator/
https://api.dev.signon-project.eu/orchestrator/


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

"fileFormat": "mp4"

}'

In the above cURL two fields needs to be filled:

● “appInstanceID”, which is a string containing the unique identifier of each instance of the

SignON Mobile App; for the tests it can be set to a constant value, without spaces (e.g.

“WP3MODULE”), so that in case of troubleshooting is it possible to know who issued the

requests;

● “fileFormat”, which indicates the extension of the file to be uploaded (e.g. “mp4”).

Response example:

{

"PreSignedURL":"http://minio:9000/signon/WP3Module/2022-11-18_13-33-28_450_e3

dc35dd-2326-47c2-8ac0-4fd63155f455.mp4?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz

-Credential=minioadmin%2F20221118%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=

20221118T133328Z&X-Amz-Expires=300&X-Amz-SignedHeaders=host&X-Amz-Signature=d

ad439217ccd7eb31a5cd9c2bbc0ff6d9a475f4c7ac8c3892c705eead98fd9fe",

"ObjectName":"WP3Module/2022-11-18_13-31-21_754_7f08e986-5002-42f5-b881-105f3

5b77a9e.mp4"

}

Notice that in the Response above two fields are returned:

● “PreSignedURL”, which is the actual pre-signed URL that is used later to upload the object;

● “ObjectName”, a string uniquely identifying the uploaded object, needed to retrieve the object

later on from the Object Storage.

5.2.3 Test#03: Upload File to the Object Storage (Minio)

The previously obtained pre-signed URL can be used to upload our desired object (e.g. “*.wav” file).

In this test, two fields need to be filled with specific information:

● the local path of the file to be uploaded.

● the pre-signed URL returned from the previous cURL.

Request template:

curl -v -X PUT -T "<LOCAL_PATH_OF_THE_FILE_TO_BE_UPLOADED>" \

-H "Content-Type: application/octet-stream" \

"<PRESIGNED_URL>"

© SignON Consortium, 2023 34 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Request example:

curl -X PUT -T

"/home/corrir/repositories/signon-project/example-files/test_file.mp4" \

-H "Content-Type: application/octet-stream" \

"http://minio:9000/signon/WP3Module/2022-11-18_13-33-28_450_e3dc35dd-2326-47c

2-8ac0-4fd63155f455.mp4?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=min

ioadmin%2F20221118%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20221118T133328

Z&X-Amz-Expires=300&X-Amz-SignedHeaders=host&X-Amz-Signature=dad439217ccd7eb3

1a5cd9c2bbc0ff6d9a475f4c7ac8c3892c705eead98fd9fe"

Response example:

HTTP 200 (OK)

To check whether the file is actually uploaded, the MinIO web interface can be used :

1. Open a web-browser on the local machine and go to the following link:

http://localhost:9001

2. Login in the MinIO web interface with the credential specified in the configuration (see

section “2.3 - Object Storage”).

3. Click on “Buckets” in the left panel to have a view of the buckets (see Figure 10).

Figure 10 MinIO buckets list in the web interface

● Click on the blue button “Browse” to show all the objects in the bucket (see Figure 11).

Please notice the file Object Names, which can be employed to retrieve the files from the

storage as shown in the next section.

© SignON Consortium, 2023 35 of 47

http://localhost:9001


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Figure 11 MinIO objects list in the web interface

5.2.4 Test#04: Simulate Message from App through cURL

In this test is simulated the SignON Mobile App request to translate a message encoded in a given

language (e.g. English) and mode (e.g. audio) to another language (e.g. Spanish) and mode (e.g. text).

This message goes in sequence through the SignON Orchestrator to the WP3, WP4 and WP5 SignON

Dispatchers, where it is processed. Then, the processed message is returned back through the

SignON Orchestrator to the SignON Mobile App (or, in this case, to the client that issued the cURL

request simulating the behaviour of the SignON Mobile App).

Request template:

curl -X 'POST' 'http://localhost:8080/message' \

-H 'accept: application/json' \

-H 'Content-Type: application/json' \

-d '{

"App": {

"sourceKey": "<OBJECT_NAME>",

"sourceText": "<SOURCE_TEXT>",

"sourceLanguage": "<SOURCE_LANGUAGE>",

"sourceMode": "<SOURCE_MODE>",

"sourceFileFormat": "<SOURCE_FILE_FORMAT>",

"sourceVideoCodec": "<SOURCE_VIDEO_CODEC>",

"sourceVideoResolution": "<SOURCE_VIDEO_RESOLUTION>",

"sourceVideoFrameRate": <SOURCE_VIDEO_FRAME_RATE>,

"sourceVideoPixelFormat": "<SOURCE_VIDEO_PIXEL_FORMAT>",

"sourceAudioCodec": "<SOURCE_AUDIO_CODEC>",

"sourceAudioChannels": "<SOURCE_AUDIO_CHANNELS>",

"sourceAudioSampleRate": <SOURCE_AUDIO_SAMPLE_RATE>,

"translationLanguage": "<TRANSLATION_LANGUAGE>",

"translationMode": "<TRANSLATION_MODE>",

© SignON Consortium, 2023 36 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

"appInstanceID": "<APP_INSTANCE_ID>",

"appVersion": "<APP_INSTANCE>",

"T0App": <T0_APP>

}

}'

It’s important to keep aligned the name for both the “folder” in which the file is uploaded in MinIO

and the folder in which the file is downloaded on our local machine. As shown in the following

example, the first part of the “sourceKey” field indicates that the file is uploaded on MinIO in the

“folder” named “WP3Module” and then the field “appInstanceID” indicates that the file will be

downloaded in the folder “WP3Module” on our local machine.

Request example:

curl -X 'POST' 'http://localhost:8080/message' \

-H 'accept: application/json' \

-H 'Content-Type: application/json' \

-d '{

"App": {

"sourceKey":

"WP3Module/2022-11-18_13-31-21_754_7f08e986-5002-42f5-b881-105f35b77a9e.mp4",

"sourceText": "NONE",

"sourceLanguage": "ENG",

"sourceMode": "VIDEO",

"sourceFileFormat": "mp4",

"sourceVideoCodec": "NONE",

"sourceVideoResolution": "NONE",

"sourceVideoFrameRate": -1,

"sourceVideoPixelFormat": "NONE",

"sourceAudioCodec": "NONE",

"sourceAudioChannels": "NONE",

"sourceAudioSampleRate": -1,

"translationLanguage": "NLD",

"translationMode": "TEXT",

"appInstanceID": "WP3Module",

"appVersion": "0.1.0",

"T0App": 1508484583259

}

}'

Response example:

© SignON Consortium, 2023 37 of 47

http://localhost:8080/message


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

{

"App": {

"sourceKey": "

WP3Module/2022-11-18_13-31-21_754_7f08e986-5002-42f5-b881-105f35b77a9e.mp4",

"sourceText": "NONE",

"sourceLanguage": "ENG",

"sourceMode": "VIDEO",

"sourceFileFormat": "mp4",

"sourceVideoCodec": "NONE",

"sourceVideoResolution": "NONE",

"sourceVideoFrameRate": -1.0,

"sourceVideoPixelFormat": "NONE",

"sourceAudioCodec": "NONE",

"sourceAudioChannels": "NONE",

"sourceAudioSampleRate": -1.0,

"translationLanguage": "NLD",

"translationMode": "TEXT",

"appInstanceID": "0000",

"appVersion": "0.1.0",

"T0App": 1508484583259

},

"OrchestratorRequest": {

"OrchestratorVersion": "8.2.1",

"T1Orchestrator": 1668779398904,

"bucketName": "signon"

},

"SourceLanguageProcessing": {

"T2WP3": 1668779409795,

"WP3ComponentsVersions": "NLP:V1.12, SL:V1.16, ASR:V3.4",

...

},

"IntermediateRepresentation": {

"T3WP4": 1668779409796,

"WP4ComponentsVersions": "ComponentA:V1.5, ComponentB:V1.1,

ComponentC:V6.4",

...

},

"MessageSynthesis": {

"T4WP5": 1668779412639,

"WP5ComponentsVersions": "ComponentX:V1.2, ComponentY:V1.6,

ComponentZ:V1.114",

© SignON Consortium, 2023 38 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

...

},

"OrchestratorResponse": {

"T5Orchestrator": 1668779412661

}

}

The response is structured in different fields as described in section “3 - API” (see Table 1).

5.3 Deployment and Testing

Once the local development and testing has been completed, it’s possible to proceed with the

deployment. Firstly, the Docker images of the SignON Dispatchers themself and of the SignON

Pipeline Components shall be created and pushed to the SignON Registry. Next, the Docker Compose

YAML file shall be updated and launched.

Finally, the testing procedure shown in section “5.2 - Local testing” can be repeated, with the

foresight of replacing the local endpoint - i.e. “http://localhost:8080/”, with the endpoint defined by

the reverse proxies - e.g. “https://signon.api/orchestrator/” (for further details please refer to section

“4 - Infrastructure”).

© SignON Consortium, 2023 39 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

6. SignON Mobile Apps

In addition to the SignON Dev engineering development test App that is described

in D2.329, the following 2 user Apps have now been developed and are running on

the SignON Framework platform

● SignON Mobile Communications App

● SignON ML MT Training App

6.1 SignON Mobile Communications App

The SignON Mobile App V1.0 is published and available for both Android and iOS

mobile devices on the Google Play Store and Apple App Store, as “SignONMobile”. It

is described in D2.6 “First release of the SignON Communication Mobile”.

Figure 12 SignON Mobile App V1.0 screens

Use of the App has been designed to be very simple and intuitive, as illustrated in Figure 5 and

explained in the “User Guide” in Figure 13.

29 D2.3 “First release of the SignON Open Cloud platform”, Public Deliverables | SignON Project
(signon-project.eu)

© SignON Consortium, 2023 40 of 47

https://signon-project.eu/publications/public-deliverables/
https://signon-project.eu/publications/public-deliverables/


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Figure 13 How to use the SignON App V1.0

Currently, the SignON Mobile provides the SignON SL, ASR and MT Framework Services, that are now

available from the ongoing WP2, WP3, WP4 and WP5 R&D work,30 as summarised in the next Figure:

Figure 14 SignON App V1.0 Functionality

Given the available SignON Framework services, the partners agreed that the App V1.0 would

demonstrate initial pre-recorded Avatar messages in all 5 SLs, and include the Acapela TTS31 and the

31 Acapela Group: Text To Speech (TTS) solutions, personalized voices based on neural technology.
(acapela-group.com)

30As described in the most recent deliverables of each of the WPs.

© SignON Consortium, 2023 41 of 47

https://www.acapela-group.com/
https://www.acapela-group.com/


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

initial version of the SignON ASR32 for “atypical speech” as described in the DoA of the GA. The SLR

functionality will be included in the App V2.0 when available later in the project.33

6.2 SignON ML Training App

To train and improve the SignON SL and atypical ASR Machine Translation Learning

systems, the SignON ML (Machine Learning) mobile App enables SignON Authorised Users

to (a) Record Task Messages in SL video or speech audio inputs from predefined use case

storyline tasks, (b) Review and Edit their Messages, (c) Tag their Messages with Text translation/

identification, and (d) Upload them to the SignON Server.

Figure 15 SigON ML Training App

The SignON ML App will be easy and intuitive to use as illustrated in Figure 15 and explained in the

Annex “SignOn ML App user Guide”. It will be published on the Google Play Store and Apple App

Store, for Android and IOS phones, respectively. It will operate in all of languages specified in the

SignON DoW (i.e. Text: Dutch, English, Irish and Spanish, SL: British, Dutch, Flemish, Irish and Spanish,

Spoken languages: Dutch Northern, Dutch Southern, English (Ireland), Irish, and Spanish), and

adheres to all of the SignON ethical and GDPR requirements.

Operation of the SignON ML App and the backend SignON Framework Server will be described in

detail in the forthcoming “D2.9 - Final Machine Learning Interface” due by M30 (June 2023).

33 As described in D3.2 “Sign language recognition component and models”

32 As described in D3.4 “Automatic speech recognition component and models”.

© SignON Consortium, 2023 42 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

7. Conclusions and Recommendations

The development and production infrastructure (software and hardware) for the SignON Framework

service is in place and operational. This deliverable describes the progress of the shared SignON

platform, which has developed significantly since D2.3 “First release of the SignON Open Cloud

platform” was delivered in January 2022. The platform consists of two separate entities: the

repository with reference data and training data, and the platform with processing space to host

both developing and developed/production components of the SignON Framework service, software

and data.

The internal architecture of the SignON Framework that has been developed is presented with a

detailed description of each component and how they communicate with each other. The

Framework is composed of different components, namely, the SignON Orchestrator, the SignON

Dispatchers, the SignON Pipeline Components (e.g. SLR, NLP, ASR, etc.) and the Object Storage.

The current SignON Framework infrastructure that has now been put in place, including the

Repository and Hosting platform, are described. They have been designed and implemented in a way

that enables SignON to be a free and open-source MT platform of services, with an open API,

between sign language, speech and text in different languages that will go beyond current partial

applications. With SignON each user will be unrestricted by the source and target modalities and

languages and can choose their preference via the mobile App’s UI, a lightweight interface that

features an intuitive responsive easy-to-use UI, personalised to provide each user with their typical

translation languages and modalities, allowing the user to simply modify these as they require, and

allowing to train to improve its performance to better meet their needs.

To facilitate Integration and Deployment, the SignON Architecture of the Cloud Platform has been

evolved and developed to allow a simplified deployment of the components developed by different

partners involved in the pipeline that processes a message. To allow each partner to develop and test

its components without interfering with the others, the process has been divided in two different

phases: (a) Local integration and testing, and (b) Deployment and testing, which are described.

Finally, two SignON Mobile Apps have been developed in addition to the original SignON Dev

engineering development test App that was described in D2.3, to run on the SignON Framework

platform. These are the SignON Mobile Communications App and the SignON ML MT Training App.

© SignON Consortium, 2023 43 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Their use is described. Operation of the SignON ML App and the backend SignON Framework Server

will be described in detail in the forthcoming “D2.9 - Final Machine Learning Interface” due in M30

(June 2023).

© SignON Consortium, 2023 44 of 47



D2.4 Intermediate release of the Open SignON Framework, GA 101017255

Annex - SignON ML App User Guide

A. How to get the SignON ML App
a. To ensure the security and quality of SignON MT training, the

SignON ML App can only be used by Users authorised by
SignON

b. If you are not already a SignON Authorised User, please
contact John@mac.ie to become one.

c. Once you are a SignON Authorised User, you can find and
install the “SignON ML” App:

i. On the Google Play Store – if you are using an
Android phone.

ii. On the Apple App Store – if you are using an
Apple phone.

B. How to use the SignON ML App
To make SignON recordings to train its Machine Translation (MT)

a. SignON ML App opening page

Briefly describes app, its purpose and use, and advises you to read the

SignON information Tab, which is the only active tab until You click

“Accept”

i. To use the App & meet GDPR/Ethical requirements you must
a. choose your text language - <Dutch, English, Irish, Spanish>

(default is English)

b. enter your phone number &
c. agree for your Session of Sign Language (SL) or Spoken Language

(SpL) Messages & associated metadata to be stored on the
SignON server as per the Consent Form. 34

ii. When you click the “Accept” button, you will be allowed to run the
SignON ML App by activating its Tabs.

b. SignON ML App Screen Tabs

The SignON ML App screen is organised with 3 tabs at the bottom of screen
for App navigation, as follows:

1) Information Tab
a. How to use the SignON ML App to record & tag SL or SpL Messages

- This User Guide, with links to a choice of SL translations.

b. Use of your session of SL or SpL Messages
- Consent Form, GDPR & Ethics requirements, with links to more extensive
information.
- To delete your data & Messages at any time, email your User Token (encoded/anonymised

phone number) to signon-rec@adaptcentre.ie

34 The phone number is requested to re-identify your data on the SignOn server, in case you request to delete
files uploaded to the SignOn system. The phone number will not leave your mobile phone and will not be
known to us.

© SignON Consortium, 2023 45 of 47

mailto:John@mac.ie
mailto:signon-rec@adaptcentre.ie


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

c. Information on SignON
- Link to SignON Project - Sign Language Translation Mobile Application
(signon-project.eu)

2) Your Settings Tab
To set up your settings for a Session of SL or SpL Messages to be recorded & uploaded to the
SignON server

i. Sign or Spoken Messages to be recorded - <SL, SpL>
1. If SL: SL - <British, Dutch, Flemish, Irish, Spanish>
2. If SpL: SpL- < Nederlands (Dutch Nth), Vlaams (Dutch Sth), English (Ireland),

Irish, Spanish>
ii. Gender - <Female, Male, Other, Prefer Not to answer>
iii. Age - <18-30, 31-45, 46-60, 60+, Prefer Not to answer>
iv. I am - <Deaf, Hard of Hearing, Hearing, Prefer Not to answer>

3) Home or Main Screen Tab
1) Record and review your SL or SpL Message
2) Provide its Text translation
3) Upload the Message to the SignON server

4) Move on to your next SL or SpL message

C. How to use the SignON ML App to make a SignON recording for MT training

1) Record and Review a SL or SpL Message
a) Record a Task Message (SL or SpL) from predefined storyline

tasks.
b) Review the Recording of your SL or SpL Message contribution.
c) If you are not happy with the Recording,

i) Press “Cancel” to delete the Recording
ii) Go back to step a) & record your

Message again.
d) If you wish to take out non-relevant parts of

your Recording before & after your Message,
i) Press “Start Time” & move the slider to

position. Press again to lock the start ,
ii) Press “End Time” and do the same .

e) Review your trimmed Message & if OK, save it
by selecting “Save”

2) Add Text of SL or SpL Message
a) Tag your recorded SL or SpL Message with its Task identifier, e.g. H1

for the first task in the Hotel storyline.

b) You may also add a text transcription to your recording. You are free to

do this or not

3) Upload the SL or SpL Message
Use the “Upload” button to then upload your SL or SpL Message, its Text translation/
identification & your Session settings metadata, as a Message Data Package to the
SIgnON Server.

© SignON Consortium, 2023 46 of 47

https://signon-project.eu/
https://signon-project.eu/


D2.4 Intermediate release of the Open SignON Framework, GA 101017255

4) Next Message or End the Session
When you get an Acknowledgement from the SignON Server, you can then proceed to

i. Record your next SL or SpL Message by going
back to step C.1, or

ii. End your Session by exiting the App.

D. How to ensure the Quality of each SignON recording
● Make the recordings on the basis of the agreed predefined storylines
● Always use a quiet and well lit location with a plain/smooth

background.
● When making an SL recording hold the phone steady, or place it

on a solid base, especially if it is a two-handed recording.

● Hold the phone at a comfortable distance if you make a SpL

recording.

● Keep each SL and SpL message short - no more than a minute.

● Always review the SL or SpL message to ensure that it is clear and

correct.

● The SL or SpL message should be immediately tagged with the task

identifier by the user. Adding a transcription is optional.

● Check and edit the tagged text before uploading the Message Data

Package to the SignON server.

E. Post Hoc Quality Checking & Processing
Each SignON Message Data Package will be stored in a standard database that will be accessed

for Post Hoc Quality Checking & Processing (editing, transcription, deleting, tagging, etc) only by

SignON researchers without revealing any of your personal information.

© SignON Consortium, 2023 47 of 47


